Aligned Electrospun Fibers Inducing Cell and Nuclear Morphology Remodeling via Ras-Associated Protein 1/Yes-Associated Protein Signaling Enhances Bone Regeneration

Shengjie Jiang , Jialiang Zhou , Cancan Zhao , Liyun Wang , Zeyu Fu , Mazaher Gholipourmalekabadi , Xudong Wang , Changyong Yuan , Kaili Lin

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) : 1980 -1997.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) :1980 -1997. DOI: 10.1007/s42765-025-00596-9
Research Article
research-article

Aligned Electrospun Fibers Inducing Cell and Nuclear Morphology Remodeling via Ras-Associated Protein 1/Yes-Associated Protein Signaling Enhances Bone Regeneration

Author information +
History +
PDF

Abstract

The topographical features of biomaterials play pivotal roles in modulating bone regeneration by enhancing the osteogenic potential of bone marrow-derived mesenchymal stem cells (BMSCs) through cytoskeletal-nuclear dynamics. However, the precise mechanisms underlying the interplay between topography-induced cell morphology modulation and cytoskeletal-nuclear responses remain poorly understood. In this study, we fabricated electrospun fiber membranes with distinct aligned and random topographies and observed a significant enhancement in the osteogenic differentiation of BMSCs in vitro on the aligned membranes. RNA sequencing analysis revealed the critical involvement of cytoskeletal reorganization, focal adhesion, and the Rap1 signaling pathway in this process. Specifically, cell elongation driven by the aligned topography activated the p130Cas/Crk/Rap1 pathway, which in turn modulated mitogen-activated protein kinase (MAPK) signaling and cytoskeletal rearrangement. This cytoskeletal remodeling induced nuclear deformation and enhanced the nuclear translocation of Yes-associated protein (YAP), synergistically promoting osteogenesis. Finally, in vivo experiments further confirmed the superior bone regeneration capacity of aligned fiber membranes in a rat calvarial defect model. These findings highlight the importance of the topographic features of aligned fibers in regulating cellular and nuclear morphology to enhance bone regeneration, suggesting a novel and effective strategy for tissue engineering applications.

Keywords

Electrospinning / Aligned fiber / Cell morphological remolding / Osteogenesis / Bone regeneration

Cite this article

Download citation ▾
Shengjie Jiang, Jialiang Zhou, Cancan Zhao, Liyun Wang, Zeyu Fu, Mazaher Gholipourmalekabadi, Xudong Wang, Changyong Yuan, Kaili Lin. Aligned Electrospun Fibers Inducing Cell and Nuclear Morphology Remodeling via Ras-Associated Protein 1/Yes-Associated Protein Signaling Enhances Bone Regeneration. Advanced Fiber Materials, 2025, 7(6): 1980-1997 DOI:10.1007/s42765-025-00596-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ou ZX, Wei JY, Lei J, Wu D, Tong BD, Liang HZ, Zhu DC, Wang HC, Zhou XY, Xu HP, Du Z, Du YF, Tan L, Yang C, Feng XB. Biodegradable Janus sonozyme with continuous reactive oxygen species regulation for treating infected critical-sized bone defects. Nat Commun, 2024, 15: 23

[2]

Perez JR, Kouroupis D, Li DJ, Best TM, Kaplan L, Correa D. Tissue engineering and cell-based therapies for fractures and bone defects. Front Bioeng Biotechnol, 2018, 6: 105

[3]

Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater, 2018, 3: 278

[4]

Liu S, Wang W, Chen Z, Wu P, Pu W, Li G, Song J, Zhang J. An osteoimmunomodulatory biopatch potentiates stem cell therapies for bone regeneration by simultaneously regulating IL-17/Ferroptosis signaling pathways. Adv Sci, 2024, 11: 2401882

[5]

Hu C, Chu CY, Liu L, Wang CB, Jin SE, Yang RL, Rung SA, Li JD, Qu YL, Man Y. Dissecting the microenvironment around biosynthetic scaffolds in murine skin wound healing. Sci Adv, 2021, 7 16

[6]

Wang H, Liu JQ, Wang CT, Shen SG, Wang XD, Lin KL. The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration. J Mater Sci Technol, 2021, 63: 18

[7]

Cui JJ, Xia LG, Lin KL, Wang XH. In situ construction of a nano-structured akermanite coating for promoting bone formation and osseointegration of Ti-6Al-4V implants in a rabbit osteoporosis model. J Mater Chem B, 2021, 9: 9505

[8]

Xiao LF, Liu HF, Wu SJ, Huang HY, Xie YL, Wei RX, Lei J, Lei YF, Xue LJ, Yan FF, Geng Z, Cai L. Fishnet-inspired 3D scaffold fabricated from mesh-like electrospun membranes promoted osteoporotic bone regeneration. Adv Fiber Mater, 2025, 7: 72

[9]

Zhang M, Zhou Q, Dong Q, Zhang J, Zhou X, Huang H, Bao J, Shan H, Sun F, Li L. Electrospun bioactive poly(ε-caprolactone) nanofibrous scaffolds incorporated with natural decellularized bone extracellular matrix for bone regeneration. Eur Cells Mater, 2025, 49: 35

[10]

Jin R, Chen Y, Zhang N, Zhang W, Jing L, Gan D, Tian B, An Y, Chen F, He X, Wang J. SiO2 nanoparticle-encapsulated metformin delivered by a poly(lactic-co-glycolic acid)/polycaprolactone electrospun nanofiber membrane promotes cell osteogenesis under high-glucose conditions: in vitro and in vivo studies. Transl Dent Res, 2025, 1100007

[11]

Deng X, Fu Z, Jiang S, Chen X, Cui J, Zhang J, Yang S, Liang Y, Jiang W, Li D, Lin K, Wang X. Synergistic effect of electrophysiological microenvironment and bioactive ions for enhancing bone regeneration. Nano Energy, 2024, 130 110113

[12]

Liu LJ, Zhang TT, Li CJ, Jiang GS, Wang FJ, Wang L. Regulating surface roughness of electrospun poly(ε-caprolactone)/β-tricalcium phosphate fibers for enhancing bone tissue regeneration. Eur Polym J, 2021, 143 10

[13]

Xie J, Wu X, Zheng S, Lin K, Su J. Aligned electrospun poly(L-lactide) nanofibers facilitate wound healing by inhibiting macrophage M1 polarization via the JAK-STAT and NF-κB pathways. J Nanobiotechnology, 2022, 20: 342

[14]

Gao C, Lai Y, Cheng L, Cheng Y, Miao A, Chen J, Yang R, Xiong F. PIP2 alteration caused by elastic modulus and tropism of electrospun scaffolds facilitates altered BMSCs proliferation and differentiation. Adv Mater, 2023, 35: 2212272

[15]

Wang C, Chu C, Zhao X, Yang Y, Hu C, Liu L, Li J, Qu Y, Man Y. The diameter factor of aligned membranes facilitates wound healing by promoting epithelialization in an immune way. Bioact Mater, 2022, 11: 206

[16]

Jiao Y, Li X, Chen J, Li C, Liu L, Liu X, Wang F, Chen G, Wang L. Constructing nanoscale topology on the surface of microfibers inhibits fibroblast fibrosis. Adv Fiber Mater, 2022, 4: 1219

[17]

Liu Y, Guo Q, Zhang X, Wang Y, Mo X, Wu T. Progress in electrospun fibers for manipulating cell behaviors. Adv Fiber Mater, 2023, 5: 1241

[18]

Lv Y, Sang X, Tian Z, Jiang S, Li C, Guo Q, Wang C, Hu P, Liu Y. Electrospun hydroxyapatite loaded L-polylactic acid aligned nanofibrous membrane patch for rotator cuff repair. Int J Biol Macromol, 2022, 217: 180

[19]

Hu H, Liu J, Liu W, Chen Y, Dai Z, Hu Y, Liu Z. l-Arginine-whitlockite dopped electrospun periosteum with parallel-oriented surface topography promotes bone repair through coupled innervation and vascularization. Chem Eng J, 2025, 515 163510

[20]

Fu Z, Li D, Lin K, Zhao B, Wang X. Enhancing the osteogenic differentiation of aligned electrospun poly(L-lactic acid) nanofiber scaffolds by incorporation of bioactive calcium silicate nanowires. Int J Biol Macromol, 2023, 226 1079

[21]

Xie J, Shen H, Yuan G, Lin K, Su J. The effects of alignment and diameter of electrospun fibers on the cellular behaviors and osteogenesis of BMSCs. Mater Sci Eng, C, 2021, 120 111787

[22]

Wang XM, Liang YY, Li JT, Wang J, Yin GF, Chen Z, Huang ZB, Pu XM. Artificial periosteum promotes bone regeneration through synergistic immune regulation of aligned fibers and BMSC-recruiting phages. Acta Biomater, 2024, 180: 262

[23]

Wang X, Agrawal V, Dunton CL, Liu Y, Virk RKA, Patel PA, Carter L, Pujadas EM, Li Y, Jain S, Wang H, Ni N, Tsai HM, Rivera-Bolanos N, Frederick J, Roth E, Bleher R, Duan C, Ntziachristos P, He TC, Reid RR, Jiang B, Subramanian H, Backman V, Ameer GA. Chromatin reprogramming and bone regeneration in vitro and in vivo via the microtopography-induced constriction of cell nuclei. Nat Biomed Eng, 2023, 7: 1514

[24]

Chen Y, Zhang Q, Yang S, Li G, Shi C, Hu X, Asahina S, Asano N, Zhang Y. Formulate adaptive biphasic scaffold via sequential protein-instructed peptide co-assembly. Adv Sci, 2024, 11 2401478

[25]

Wang S, Hashemi S, Stratton S, Arinzeh TL. The effect of physical cues of biomaterial scaffolds on stem cell behavior. Adv Healthcare Mater, 2021, 10: 2001244

[26]

Li Y, Zhong Z, Xu C, Wu X, Li J, Tao W, Wang J, Du Y, Zhang S. 3D micropattern force triggers YAP nuclear entry by transport across nuclear pores and modulates stem cells paracrine. Natl Sci Rev, 2023, 10: 165

[27]

Jeong B, Yoon JY, Ahn J, Lee B, Park SM, Kim JH, Bayarkhangai B, Kim YJ, Lee S, Knowles JC, Kim MY, Lee D, Rhee SH, Lee HH, Kim HW, Lee JH. Eco-Fabricated Nanowave-Textured Implants Drive Microtubule-Assisted Nuclear Mechanotransduction and Chromatin Modification: Biophysical Priming for Osteogenesis and Bone Regeneration. Adv Funct Mater.2025. https://doi.org/10.1002/adfm.202503422.

[28]

Park SM, Lee JH, Ahn KS, Shim HW, Yoon JY, Hyun J, Lee JH, Jang S, Yoo KH, Jang YK, Kim TJ, Kim HK, Lee MR, Jang JH, Shim H, Kim HW. Cyclic stretch promotes cellular reprogramming process through cytoskeletal-nuclear mechano-coupling and epigenetic modification. Adv Sci, 2023, 10: 2303395

[29]

Su L, Dong C, Liu L, Feng Y, Xu J, Ke Q, Chang J, Yang C, Xu H. Low-temperature trigger nitric oxide nanogenerators for anti-biofilm and wound healing. Adv Fiber Mater, 2024, 6: 512

[30]

Cui J, Yu B, Li D, Fu Z, Yang X, Jiang L, Wang X, Lin K. Remodeling electrophysiological microenvironment for promoting bone defect repair via electret hybrid electrospun fibrous mat. Adv Fiber Mater, 2024, 6: 1855

[31]

Oroujzadeh M, Mosaffa E, Mehdipour-Ataei S. Recent developments on preparation of aligned electrospun fibers: Prospects for tissue engineering and tissue replacement. Surf Interfaces, 2024, 49 104386

[32]

Ying T, Su J, Jiang Y, Ke Q, Xu H. A pre-wetting induced superhydrophilic/superlipophilic micro-patterned electrospun membrane with self-cleaning property for on-demand emulsified oily wastewater separation. J Hazard Mater, 2020, 384 121475

[33]

Jin S, Yang R, Chu C, Hu C, Zou Q, Li Y, Zuo Y, Man Y, Li J. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomater, 2021, 129: 148

[34]

Liu W, Wei Y, Zhang X, Xu M, Yang X, Deng X. Lower extent but similar rhythm of osteogenic behavior in hBMSCs cultured on nanofibrous scaffolds versus induced with osteogenic supplement. ACS Nano, 2013, 7: 6928

[35]

Gao QM, Liu JL, Wang MK, Liu XF, Jiang YY, Su JC. Biomaterials regulates BMSCs differentiation via mechanical microenvironment. Biomater Adv, 2024, 157: 18

[36]

Wang X, Shen M, Ma M, Zhang H, Shi C, Lu H, He W, Chen Y. Rational construct of extracellular matrix mimics via peptide-co-assembling nanofibers for efficient bone regeneration. Adv Fiber Mater, 2025

[37]

Chavez MB, Tan MH, Kolli TN, Zachariadou C, Farah F, Mohamed FF, Chu EY, Foster BL. Bone sialoprotein is critical for alveolar bone healing in mice. J Dent Res, 2023, 102: 187

[38]

Wang K, Zhou M, Zhang YS, Jin YS, Xue Y, Mao D, Rui YJ. Fibromodulin facilitates the osteogenic effect of Masquelet's induced membrane by inhibiting the TGF-β/SMAD signaling pathway. Biomater Sci, 2024, 12: 1898

[39]

Tanaka K, Kanazawa I, Kaji H, Sugimoto T. Association of osteoglycin and FAM5C with bone turnover markers, bone mineral density, and vertebral fractures in postmenopausal women with type 2 diabetes mellitus. Bone, 2017, 95: 5

[40]

Hu LJ, Jonsson KB, Andersén H, Edenro A, Bohlooly-Y M, Melhus H, Lind T. Over-expression of Adamts1 in mice alters bone mineral density. J Bone Miner Metab, 2012, 30: 304

[41]

Ma QL, Wang SY, Xie ZA, Shen Y, Zheng BJ, Jiang C, Yuan PT, Yu CC, Li LP, Zhao XD, Chen JX, Qin A, Fan SW, Jie ZW. The SFRP1 inhibitor WAY-316606 attenuates osteoclastogenesis through dual modulation of canonical Wnt signaling. J Bone Miner Res, 2022, 37: 152

[42]

Deroyer C, Charlier E, Neuville S, Malaise O, Gillet P, Kurth W, Chariot A, Malaise M, de Seny D. CEMIP (KIAA1199) induces a fibrosis-like process in osteoarthritic chondrocytes. Cell Death Dis, 2019, 10 17

[43]

Von Erlach TC, Bertazzo S, Wozniak MA, Horejs CM, Maynard SA, Attwood S, Robinson BK, Autefage H, Kallepitis C, Del Río HA, Chen CS, Goldoni S, Stevens MM. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nat Mater, 2018, 17: 237

[44]

Wen ZH, Li SY, Liu Y, Liu XY, Qiu HG, Che YJ, Bian LM, Zhou M. An engineered M2 macrophage-derived exosomes-loaded electrospun biomimetic periosteum promotes cell recruitment, immunoregulation, and angiogenesis in bone regeneration. Bioact Mater, 2025, 50: 95

[45]

Chen TQ, Peng Y, Hu WJ, Shi HH, Li PF, Que YC, Qiu JC, Qiu XJ, Gao B, Zhou H, Chen YB, Zhu YX, Li SG, Liang AJ, Gao WJ, Huang DS. Irisin enhances chondrogenic differentiation of human mesenchymal stem cells via Rap1/PI3K/AKT axis. Stem Cell Res Ther, 2022, 13 13

[46]

Wu Y, Zhou J, Li Y, Zhou Y, Cui Y, Yang G, Hong Y. Rap1A regulates osteoblastic differentiation via the ERK and p38 mediated signaling. PLoS ONE, 2015, 10 0143777

[47]

Chen S, He TL, Zhong YM, Chen MJ, Yao Q, Chen D, Shao ZW, Xiao GZ. Roles of focal adhesion proteins in skeleton and diseases. Acta Pharm Sin B, 2023, 13: 998

[48]

Freeman SA, Christian S, Austin P, Iu I, Graves ML, Huang L, Tang S, Coombs D, Gold MR, Roskelley CD. Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor. J Cell Sci, 2017, 130: 152

[49]

Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature, 2011, 474: 179

[50]

Xu X, Wang W, Zou J, Kratz K, Deng Z, Lendlein A, Ma N. Histone modification of osteogenesis related genes triggered by substrate topography promotes human mesenchymal stem cell differentiation. ACS Appl Mater Interfaces, 2023, 15: 29752

[51]

Liu W, Sun Q, Zheng ZL, Gao YT, Zhu GY, Wei Q, Xu JZ, Li ZM, Zhao CS. Topographic cues guiding cell polarization via distinct cellular mechanosensing pathways. Small, 2022, 18: 2104328

[52]

Kim JI, Kim JY, Kook SH, Lee JC. A novel electrospinning method for self-assembled tree-like fibrous scaffolds: Microenvironment-associated regulation of MSC behavior and bone regeneration. J Mater Sci Technol, 2022, 115: 52

[53]

Scott KE, Fraley SI, Rangamani P. A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes. Proc Natl Acad Sci U S A, 2021, 118: 2021571118

[54]

Jiang S, Jing H, Zhuang Y, Cui J, Fu Z, Li D, Zhao C, Liaqat U, Lin K. BMSCs-laden mechanically reinforced bioactive sodium alginate composite hydrogel microspheres for minimally invasive bone repair. Carbohydr Polym, 2024, 332 121933

Funding

National Natural Science Foundation of China(32271379)

Shanghai's Top Priority Research Center(2022ZZ01017)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/