Structurally Programmed Textile Metasurfaces for Soft Morphing Robotics and Bionic Mimetic Camouflage

Chenmin Yuan , Fei Sun , Jiaan Lyu , Xingyu Zheng , Danfeng Wang , Xuzhong Su , Xiaorui Hu , Fengxin Sun

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) : 1949 -1963.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) :1949 -1963. DOI: 10.1007/s42765-025-00591-0
Research Article
research-article

Structurally Programmed Textile Metasurfaces for Soft Morphing Robotics and Bionic Mimetic Camouflage

Author information +
History +
PDF

Abstract

Natural soft systems capable of reversible shape morphing are ubiquitous in living organisms, enabling remarkable multifunctionality such as continuous motions, dexterous manipulation, and adaptive camouflage. However, replicating these capabilities in synthetic materials remains challenging, primarily due to sophisticated mechanical control, restrictive design flexibility, and limited robustness and scalability. Here, we propose a structure-driven design framework to encode the knitted shells with spatially localized strain constraints for soft robotic systems and mimetic camouflage morphing solely by controlling stitch geometry. By leveraging experiments and theoretical analysis, we decouple the effects of stitch-level topology and yarn composition on fabric macromechanical behavior and achieve programmable mechanical responses in knitted shells through geometric tuning. This also enables robust control of non-Euclidean shape morphing in soft textile robotics, including multi-mode inflatable deformation, sequential motion under a single stimulus, and predefined flat-to-shape Gaussian transformations for dynamic mimetic camouflage. This geometry-informed design strategy can provide new insights into scalable, low-cost and customized soft textile robotics for multifunctional applications, such as tailored wearable devices, camouflage gear skin, and human–robot interactions that are resistant to environmental disturbances.

Graphical Abstract

A structure-driven design framework is presented to encode the knitted shells with customized local strain constraint for soft knit robotic systems and mimetic camouflage morphing. This structure-driven design can provide new insights to develop robust, scalable, and low-cost soft robotics for multifunctional applications in tailored wearable devices, versatile camouflage gear skin, and safe human-machine interactions.

Keywords

Soft robotics / Bioinspired / Knit fabric / Mimetic camouflage / Stretchable surface

Cite this article

Download citation ▾
Chenmin Yuan, Fei Sun, Jiaan Lyu, Xingyu Zheng, Danfeng Wang, Xuzhong Su, Xiaorui Hu, Fengxin Sun. Structurally Programmed Textile Metasurfaces for Soft Morphing Robotics and Bionic Mimetic Camouflage. Advanced Fiber Materials, 2025, 7(6): 1949-1963 DOI:10.1007/s42765-025-00591-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pikul JH, Li S, Bai H, Hanlon RT, Cohen I, Shepherd RF. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science, 2017, 358: 210

[2]

Allen JJ, Bell GRR, Kuzirian AM, Velankar SS, Hanlon RT. Comparative morphology of changeable skin papillae in octopus and cuttlefish. J Morphol, 2013, 275: 371

[3]

Chen T, Yang X, Zhang B, Li J, Pan J, Wang Y. Scale-inspired programmable robotic structures with concurrent shape morphing and stiffness variation. Sci Robot, 2024, 9(92 eadl0307

[4]

Truman JW, Riddiford LM. The origins of insect metamorphosis. Nature, 1999, 401: 447

[5]

Liang H, Mahadevan L. Growth, geometry, and mechanics of a blooming lily. Proc Natl Acad Sci USA, 2011, 108: 5516

[6]

An S, Cao Y, Jiang H. A mechanically robust and facile shape morphing using tensile-induced buckling. Sci Adv, 2024, 10 eado8431

[7]

Jones TJ, Jambon-Puillet E, Marthelot J, Brun PT. Bubble casting soft robotics. Nature, 2021, 599: 229

[8]

Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Soft actuators for real-world applications. Nat Rev Mater, 2022, 7: 235

[9]

Seyidoğlu B, Rafsanjani A. A textile origami snake robot for rectilinear locomotion. Device, 2024, 2 100226

[10]

Sanchez V, Walsh CJ, Wood RJ. Textile technology for soft robotic and autonomous garments. Adv Funct Mater, 2020, 31 2008278

[11]

Li H, Zhao Z, Yang M, Peng Y, Du Z, Sun F. Yarn-grouping weaving soft robotics with directional inflation, bilateral bending, and self-sensing for healthcare. Cell Rep Phys Sci, 2024, 5 102137

[12]

Ze Q, Wu S, Dai J, Leanza S, Ikeda G, Yang PC, Iaccarino G, Zhao RR. Spinning-enabled wireless amphibious origami millirobot. Nat Commun, 2022, 13 3118

[13]

Choi YS, Jeong H, Yin RT, Avila R, Pfenniger A, Yoo J, Lee JY, Tzavelis A, Lee YJ, Chen SW, Knight HS, Kim S, Ahn HY, Wickerson G, Vázquez-Guardado A, Higbee-Dempsey E, Russo BA, Napolitano MA, Holleran TJ, Razzak LA, Miniovich AN, Lee G, Geist B, Kim B, Han SL, Brennan JA, Aras K, Kwak SS, Kim J, Waters EA, Yang XX, Burrell A, Chun KS, Liu C, Wu CS, Rwei AY, Spann AN, Banks A, Johnson D, Zhang ZJ, Haney CR, Jin SH, Sahakian AV, Huang YG, Trachiotis GD, Knight BP, Arora RK, Efimov IR, Rogers JA. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science, 2022, 376: 1006

[14]

Morin SA, Shepherd RF, Kwok SW, Stokes AA, Nemiroski A, Whitesides GM. Camouflage and display for soft machines. Science, 2012, 337: 828

[15]

Kim S-U, Lee Y-J, Liu J, Kim DS, Wang H, Yang S. Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers. Nat Mater, 2022, 21: 41

[16]

Hanlon R. Cephalopod dynamic camouflage. Curr Biol, 2007, 17: R400

[17]

Barbosa A, Mäthger LM, Chubb C, Florio C, Chiao C-C, Hanlon RT. Disruptive coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic adjustment of skin patterning. J Exp Biol, 2007, 210: 1139

[18]

Lee H, Kim H, Ha I, Jung J, Won P, Cho H, Yeo J, Hong S, Han S, Kwon J, Cho KJ, Ko SH. Directional shape morphing transparent walking soft robot. Soft Robot, 2019, 6: 760

[19]

Won P, Kim KK, Kim H, Park JJ, Ha I, Shin J, Jung J, Cho H, Kwon J, Lee H, Ko SH. Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv Mater, 2021, 33 e2002397

[20]

Wang Y, Zhang P, Huang H, Zhu J. Bio-inspired transparent soft jellyfish robot. Soft Robot, 2022, 10: 590

[21]

Kim H, Choi J, Kim KK, Won P, Hong S, Ko SH. Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat Commun, 2021, 12: 4658

[22]

Li X, Cheng Y, Zhou Y, Shi L, Sun J, Ho GW, Wang R. Programmable robotic shape shifting and color morphing dynamics through magneto-mechano-chromic coupling. Adv Mater, 2024, 36 e2406714

[23]

Xi W, Lee Y-J, Yu S, Chen Z, Shiomi J, Kim S-K, Hu R. Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage. Nat Commun, 2023, 14: 4694

[24]

Liang L, Yang X, Li C, Yu R, Zhang B, Yang Y, Ji G. MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv Mater, 2024, 36 e2313939

[25]

Baines R, Patiballa SK, Gorissen B, Bertoldi K, Kramer-Bottiglio R. Programming 3D curves with discretely constrained cylindrical inflatables. Adv Mater, 2023, 35 e2300535

[26]

Liang L, Li C, Yang X, Chen Z, Zhang B, Yang Y, Ji G. Pneumatic structural deformation to enhance resonance behavior for broadband and adaptive radar stealth. Nano Lett, 2024, 24: 2652

[27]

Guo J, Li Z, Low J-H, Han Q, Chen C-Y, Liu J, Liu Z, Yeow C-H. Kirigami-inspired 3D printable soft pneumatic actuators with multiple deformation modes for soft robotic applications. Soft Robot, 2023, 10: 737

[28]

Jin L, Forte AE, Deng B, Rafsanjani A, Bertoldi K. Kirigami-inspired inflatables with programmable shapes. Adv Mater, 2020, 32 e2001863

[29]

Yan W, Li S, Deguchi M, Zheng Z, Rus D, Mehta A. Origami-based integration of robots that sense, decide, and respond. Nat Commun, 2023, 14: 1553

[30]

Heiden A, Preninger D, Lehner L, Baumgartner M, Drack M, Woritzka E, Schiller D, Gerstmayr R, Hartmann F, Kaltenbrunner M. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators. Sci Robot, 2022, 7 eabk2119

[31]

Liao W, Yang Z. 3D printing programmable liquid crystal elastomer soft pneumatic actuators. Mater Horiz, 2023, 10: 576

[32]

Luo Y, Li Y, Sharma P, Shou W, Wu K, Foshey M, Li B, Palacios T, Torralba A, Matusik W. Learning human–environment interactions using conformal tactile textiles. Nature Electronics, 2021, 4: 193

[33]

Zhang P, Lei IM, Chen G, Lin J, Chen X, Zhang J, Cai C, Liang X, Liu J. Integrated 3D printing of flexible electroluminescent devices and soft robots. Nat Commun, 2022, 13: 4775

[34]

Singal K, Dimitriyev MS, Gonzalez SE, Cachine AP, Quinn S, Matsumoto EA. Programming mechanics in knitted materials, stitch by stitch. Nat Commun, 2024, 15: 2622

[35]

Jérôme C, Samuel P, Audrey S. Metastability of a periodic network of threads: what are the shapes of a knitted fabric ? arXiv—PHYS—Soft Condensed Matter. 2024; 133: 248201.

[36]

Ding X, Sanchez V, Bertoldi K, Rycroft CH. Unravelling the mechanics of knitted fabrics through hierarchical geometric representation. Proc R Soc Lond A Math Phys Eng Sci, 2024, 480: 20230753

[37]

Lin S, Wang Z, Chen X, Ren J, Ling S. Ultrastrong and highly sensitive fiber microactuators constructed by force-reeled silks. Adv Sci, 2020, 7: 1902743

[38]

Yang M, Sun F, Hu X, Sun F. Knitting from nature: self-sensing soft robotics enabled by all-in-one knit architectures. ACS Appl Mater Interfaces, 2023, 15: 44294

[39]

Guo X, Li W, Fang F, Chen H, Zhao L, Fang X, Yi Z, Shao L, Meng G, Zhang W. Encoded sewing soft textile robots. Sci Adv, 2024, 10 eadk3855

[40]

Wang F, Li H, Hu P, Wang Y, Guan F, Su X, Iqbal MI, Sun F. Industrially scalable textile sensing interfaces for extended artificial tactile and human motion monitoring without compromising comfort. ACS Appl Mater Interfaces, 2024, 16: 16788

[41]

Mahadevan K, Yuen MC, Sanchez V, Wood RJ, Bertoldi K. Knitting Multistability. arXiv preprint2024; 2410: 14810

[42]

Zhao Z, Li H, Peng Y, Hu J, Sun F. Hierarchically programmed meta-louver fabric for adaptive personal thermal management. Adv Func Mater, 2024, 34: 202404721

[43]

du Cosima P, Lavender T, Ian S, Liana T, Tian C, Skylar T, Allison O. Haptiknit: distributed stiffness knitting for wearable haptics. Sci Robot, 2024, 9: eado3887

[44]

Cappello L, Galloway KC, Sanan S, Wagner DA, Granberry R, Engelhardt S, Haufe FL, Peisner JD, Walsh CJ. Exploiting textile mechanical anisotropy for fabric-based pneumatic actuators. Soft Robot, 2018, 5: 662

[45]

Quevedo-Moreno D, Roche ET. Design and modeling of fabric-shelled pneumatic bending soft actuators. IEEE Robot Autom Lett, 2023, 8: 3110

[46]

Yang D, Feng M, Sun J, Wei Y, Zou J, Zhu X, Gu G. Soft multifunctional bistable fabric mechanism for electronics-free autonomous robots. Sci Adv, 2025, 11 eads8734

[47]

Zhang Z, Long Y, Chen G, Wu Q, Wang H, Jiang H. Soft and lightweight fabric enables powerful and high-range pneumatic actuation. Sci Adv, 2023, 9 eadg1203

[48]

Yang D, Feng M, Gu G. High-stroke, high-output-force, fabric-lattice artificial muscles for soft robots. Adv Mater, 2024, 36 e2306928

[49]

Sanchez V, Mahadevan K, Ohlson G, Graule MA, Yuen MC, Teeple CB, Weaver JC, McCann J, Bertoldi K, Wood RJ. 3D knitting for pneumatic soft robotics. Adv Funct Mater, 2023, 33: 2212541

[50]

Luo Y, Wu K, Spielberg A, Foshey M, Rus D, Palacios T, Matusik W. Digital fabrication of pneumatic actuators with integrated sensing by machine knitting. CHI conference on human factors in computing systems 2022; 175.

[51]

Yang MX, Wu J, Jiang WJ, Hu XR, Iqbal MI, Sun FX. Bioinspired and hierarchically textile-structured soft actuators for healthcare wearables. Adv Funct Mater, 2023, 33: 2210351

[52]

Connolly F, Wagner DA, Walsh CJ, Bertoldi K. Sew-free anisotropic textile composites for rapid design and manufacturing of soft wearable robots. Extrem Mech Lett, 2019, 27: 52

Funding

National Natural Science Foundation of China(12272149)

Key Science and Technology Program of Fuzhou(2024ZD006)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

/