An Electromechanical Converted Bacterial Cellulose Based Composite Film for Repairing Peripheral Nerve Injury through Mimicking Physiological Electrical Signal

Feilong Zhao , Guodong Liu , Yanjun Guan , Junfei Li , Tianyang Wang , Jianming Zhao , Wei He , Liyang Zhang , Haoye Meng , Wenjing Xu , Yu Wang , Yudong Zheng

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) : 1929 -1948.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) :1929 -1948. DOI: 10.1007/s42765-025-00590-1
Research Article
research-article

An Electromechanical Converted Bacterial Cellulose Based Composite Film for Repairing Peripheral Nerve Injury through Mimicking Physiological Electrical Signal

Author information +
History +
PDF

Abstract

Electrical stimulation could effectively promote the repair of peripheral nerve injuries. However, traditional electrical stimulation requires external devices and connections, inevitably causing unnecessary discomfort and infection risks for patients. Thus, to ensure clinical safety and support neural regeneration, a dual-functional cellulose-based peripheral nerve conduit with both piezoelectric and conductive properties is developed by incorporating barium titanate (BTO) and poly (3,4-ethylenedioxythiophene) (PEDOT) onto the surface of expanded bacterial cellulose. The electroactive conduit not only provides suitable mechanical support and stability to ensure structural integrity in vivo, but also encourages macrophage polarization into the anti-inflammatory M2 phenotype after 2 weeks of post-implantation. Furthermore, the piezoelectric properties provided by BTO convert mechanical energy into electrical energy, which, in synergy with the conductive PEDOT, enables the conduit to stimulate nerve regeneration by mimicking bioelectric signals with an output voltage of 8.22 mV and output current of 2.05 μA at compression distances of 1.0 mm. After implantation into a sciatic nerve defect model, this conduit significantly reduces atrophy of the gastrocnemius muscle and accelerates the regeneration of sciatic nerve by facilitating the transmission of neural electrical signals. In summary, this artificial peripheral nerve conduit possesses excellent repair capacity for nerve defects, hence holding attractive prospects for clinical application.

Graphical Abstract

Keywords

Bacterial cellulose / Electroactive biomaterial / Piezoelectric property / Electromechanical conversion / Peripheral nerve conduit

Cite this article

Download citation ▾
Feilong Zhao, Guodong Liu, Yanjun Guan, Junfei Li, Tianyang Wang, Jianming Zhao, Wei He, Liyang Zhang, Haoye Meng, Wenjing Xu, Yu Wang, Yudong Zheng. An Electromechanical Converted Bacterial Cellulose Based Composite Film for Repairing Peripheral Nerve Injury through Mimicking Physiological Electrical Signal. Advanced Fiber Materials, 2025, 7(6): 1929-1948 DOI:10.1007/s42765-025-00590-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Griffin JW, Hogan MV, Chhabra AB, Deal DN. Peripheral nerve repair and reconstruction. J Bone Jt Surg, 2013, 95: 2144

[2]

López-Cebral R, Silva-Correia J, Reis R, Silva T, Oliveira J. Peripheral nerve injury: current challenges, conventional treatment approaches, and new trends in biomaterials-based regenerative strategies. ACS Biomater Sci Eng, 2017, 3: 3098

[3]

Deng R, Luo Z, Rao Z, Lin Z, Chen S, Zhou J, Zhu Q, Liu X, Bai Y, Quan D. Decellularized extracellular matrix containing electrospun fibers for nerve regeneration: a comparison between core–shell structured and preblended composites. Adv Fiber Mater, 2022, 4: 503

[4]

Zhang X, Qu W, Li D, Shi K, Li R, Han Y, Jin E, Ding J, Chen X. Functional polymer-based nerve guide conduits to promote peripheral nerve regeneration. Adv Mater, 2020, 7: 2000225

[5]

Gong B, Jin B, Qin J, Sun Y, Du W, Zhou X, Jiang X, Liu W, Tian F, Zhang L. Synergistic integration of immune regulation and bioactive guidance cues in multi-channel nanofibrous nerve guidance conduits for accelerated peripheral nerve regeneration. Adv Fiber Mater, 2025

[6]

Liu Z, Wan X, Wang ZL, Li L. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications. Adv Mater, 2021, 33: 2007429

[7]

Xu C, Wu P, Yang K, Mu C, Li B, Li X, Wang Z, Liu Z, Wang X, Luo Z. Multifunctional biodegradable conductive hydrogel regulating microenvironment for stem cell therapy enhances the nerve tissue repair. Small, 2024, 20: 2309793

[8]

Wang Q, Wei Y, Yin X, Zhan G, Cao X, Gao H. Engineered PVDF/PLCL/PEDOT dual electroactive nerve conduit to mediate peripheral nerve regeneration by modulating the immune microenvironment. Adv Funct Mater, 2024, 34: 2400217

[9]

Li J, Che Z, Wan X, Manshaii F, Xu J, Chen J. Biomaterials and bioelectronics for self-powered neurostimulation. Biomaterials, 2024, 304 122421

[10]

Zhou L, Yuan T, Jin F, Li T, Qian L, Wei Z, Zheng W, Ma X, Wang F, Feng Z-Q. Advances in applications of piezoelectronic electrons in cell regulation and tissue regeneration. J Mater Chem B, 2022, 10: 8797

[11]

Wang Q, Wang H, Ma Y, Cao X, Gao H. Effects of electroactive materials on nerve cell behaviors and applications in peripheral nerve repair. Biomater Sci, 2022, 10: 6061

[12]

Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev, 2018, 118: 6766

[13]

Spearman BS, Desai VH, Mobini S, McDermott MD, Graham JB, Otto KJ, Judy JW, Schmidt CE. Tissue-engineered peripheral nerve interfaces. Adv Funct Mater, 2018, 28 1701713

[14]

He X, Zhu Y, Ma B, Xu X, Huang R, Cheng L, Zhu R. Bioactive 2D nanomaterials for neural repair and regeneration. Adv Drug Delivery Rev, 2022, 187 114379

[15]

Alves-Sampaio A, Garcia-Rama C, Collazos-Castro JE. Biofunctionalized PEDOT-coated microfibers for the treatment of spinal cord injury. Biomaterials, 2016, 89: 98

[16]

Yan C, Wang X, Wang Q, Li H, Song H, Zhou J, Peng Z, Yin W, Fan X, Yang K, Zhou B, Liang Y, Jiang Z, Shi Y, Zhang S, He S, Li R-K, Xie J. A novel conductive polypyrrole-chitosan hydrogel containing human endometrial mesenchymal stem cell-derived exosomes facilitated sustained release for cardiac repair. Adv Healthcare Mater, 2024, 13: 2304207

[17]

Wu C, Zhang Y, Xu Y, Long L, Hu X, Zhang J, Wang Y. Injectable polyaniline nanorods/alginate hydrogel with AAV9-mediated VEGF overexpression for myocardial infarction treatment. Biomaterials, 2023, 296 122088

[18]

Ates M. A review study of (bio) sensor systems based on conducting polymers. Mater Sci Eng: C, 2013, 33: 1853

[19]

Han Y, Zhang Q, Han F, Li C, Sun J, Lu Y. Fabrication of conducting polypyrrole film with microlens arrays by combination of breath figures and replica molding methods. Polymer, 2012, 53: 2599

[20]

Bhadra S, Khastgir D, Singha NK, Lee JH. Progress in preparation, processing and applications of polyaniline. Prog Polym Sci, 2009, 34: 783

[21]

Escobar A, Serafin A, Carvalho MR, Culebras M, Cantarero A, Beaucamp A, Reis RL, Oliveira JM, Collins MN. Electroconductive poly (3, 4-ethylenedioxythiophene) (PEDOT) nanoparticle-loaded silk fibroin biocomposite conduits for peripheral nerve regeneration. Adv Compos Hybrid Mater, 2023, 6: 118

[22]

Liu X, Cai Z, Pei M, Zeng H, Yang L, Cao W, Zhou X, Chen F. Bacterial cellulose-based bandages with integrated antibacteria and electrical stimulation for advanced wound management. Adv Healthc Mater, 2024, 13: 2302893

[23]

Srinivasan SY, Cler M, Zapata-Arteaga O, Dörling B, Campoy-Quiles M, Martínez E, Engel E, Pérez-Amodio S, Laromaine A. Conductive bacterial nanocellulose-polypyrrole patches promote cardiomyocyte differentiation. ACS Appl Bio Mater, 2023, 6: 2860

[24]

Marino A, Genchi GG, Sinibaldi E, Ciofani G. Piezoelectric effects of materials on bio-interfaces. ACS Appl Mater Interfaces, 2017, 9: 17663

[25]

Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti G, Rödel J. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev, 2017, 4 041305

[26]

Sood A, Desseigne M, Dev A, Maurizi L, Kumar A, Millot N, Han SS. A comprehensive review on barium titanate nanoparticles as a persuasive piezoelectric material for biomedical applications: prospects and challenges. Small, 2023, 19: 2206401

[27]

Fang Y, Wang C, Liu Z, Ko J, Chen L, Zhang T, Xiong Z, Zhang L, Sun W. 3D printed conductive multiscale nerve guidance conduit with hierarchical fibers for peripheral nerve regeneration. Adv Sci, 2023, 10 2205744

[28]

Liu G, Zou F, He W, Li J, Xie Y, Ma M, Zheng Y. The controlled degradation of bacterial cellulose in simulated physiological environment by immobilization and release of cellulase. Carbohydr Polym, 2023, 314 120906

[29]

Zhang Z, Bao L, Qian C, Furtado M, Li H, Guo S, Zheng Y, Fu D, Dong K, Cui W. The high-strength and toughness Janus bionic periosteum matching bone development and growth in children. Compos B, 2023, 256 110642

[30]

Yang N, Huang W, Lin J, Chen Y, Wu Z, Jiang Y, Chen Y, Bao L, Cui W, Wang Z. Stable and integrated nanocellulose-covered stents via in situ microbial synthesis. Adv Funct Mater., 2025, 21: 2415272

[31]

Bao L, Li C, Tang M, Chen L, Hong F. Potential of a composite conduit with bacterial nanocellulose and fish gelatin for application as small-diameter artificial blood vessel. Polymers, 2022, 14: 4367

[32]

Liu X, Wan X, Sui B, Hu Q, Liu Z, Ding T, Zhao J, Chen Y, Wang ZL, Li L. Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation. Bioact Mater, 2024, 35: 346

[33]

Candito M, Simoni E, Gentilin E, Martini A, Marioni G, Danti S, Astolfi L. Neuron compatibility and antioxidant activity of barium titanate and lithium niobate nanoparticles. Int J Mol Sci, 2022, 23 1761

[34]

Wang L, Lu C, Yang S, Sun P, Wang Y, Guan Y, Liu S, Cheng D, Meng H, Wang Q, He J, Hou H, Liu W, Zhao Y, Wang J, Zhu Y, Li Y, Luo D, Li T, Chen H, Wang S, Sheng X, Xiong W, Wang X, Peng J, Yin L. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci Adv, 2020, 6 eabc6686

[35]

Guan Y, Ren Z, Yang B, Xu W, Wu W, Li X, Zhang T, Li D, Chen S, Bai J, Song X, Jia Z, Xiong X, He S, Li C, Meng F, Wu T, Zhang J, Liu X, Meng H, Wang Y. Dual-bionic regenerative microenvironment for peripheral nerve repair. Bioact Mater, 2023, 26: 370

[36]

He W, Huang X, Zheng Y, Sun Y, Xie Y, Wang Y, Yue L. In situ synthesis of bacterial cellulose/copper nanoparticles composite membranes with long-term antibacterial property. J Biomater Sci Polym Ed, 2018, 29: 2137

[37]

Qiao H, Guo T, Zheng Y, Zhao L, Sun Y, Liu Y, Xie Y. A novel microporous oxidized bacterial cellulose/arginine composite and its effect on behavior of fibroblast/endothelial cell. Carbohydr Polym, 2018, 184: 323

[38]

Wang J, Zhou Z, Zhang X, Fu M, Fang K, Wang Y, Wu T. One-step manufacture and crosslinking of gelatin/polygonum sibiricum polysaccharide bioactive nanofibrous sponges for rapid hemostasis and infected wound healing. Adv Fiber Mater., 2025, 25: 1-7

[39]

Liu G, Ma M, Meng H, Liu J, Zheng Y, Peng J, Wei S, Sun Y, Wang Y, Xie Y. In-situ self-assembly of bacterial cellulose/poly (3, 4-ethylenedioxythiophene)-sulfonated nanofibers for peripheral nerve repair. Carbohydr Polym, 2022, 281 119044

[40]

Yue L, Xie Y, Zheng Y, He W, Guo S, Sun Y, Zhang T, Liu S. Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte. Compos Sci Technol, 2017, 145: 122

[41]

Purohit SD, Bhaskar R, Singh H, Yadav I, Gupta MK, Mishra NC. Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int J Biol Macromol, 2019, 133: 592

[42]

Ivanko I, Pánek J, Svoboda J, Zhigunov A, Tomšík E. Tuning the photoluminescence and anisotropic structure of PEDOT. J Mater Chem C, 2019, 7: 7013

[43]

French AD. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, 2014, 21: 885

[44]

Ciomaga CE, Horchidan N, Padurariu L, Stirbu RS, Tiron V, Tufescu FM, Topala I, Condurache O, Botea M, Pintilie I. BaTiO 3 nanocubes-gelatin composites for piezoelectric harvesting: modeling and experimental study. Ceram Int, 2022, 48: 25880

[45]

Serafin A, Rubio MC, Carsi M, Ortiz-Serna P, Sanchis MJ, Garg AK, Oliveira JM, Koffler J, Collins MN. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomater Res, 2022, 26: 63

[46]

Chiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol, 2015, 131: 87

[47]

Lv N, Jiang W, Hu K, Lyu Z. Synchronous construction of piezoelectric elements and nanoresistance networks for pressure sensing based on the wheatstone bridge principle. ACS Appl Electron Mater, 2021, 3: 3936

[48]

Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies. Nat Rev Mater, 2017, 2 1

[49]

Yang B, Zhang F, Cheng F, Ying L, Wang C, Shi K, Wang J, Xia K, Gong Z, Huang X. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis, 2020, 11: 439

[50]

Yang Y, Gao X, Zhang Y, Li S, Wu H, Xia B, Hao Y, Yu B, Gao X, Geng D, Guo L, Qin M, Wei Y, Xue B, Yang S, Liu Q, Nie S, Qin A, Liu J, Lu L, Ma T, Luo Z, Huang J. A time-scheduled oxygen modulation system facilitates bone regeneration by powering periosteal stem cells. Adv Fiber Mater, 2025

[51]

Zhao F, Gao A, Liao Q, Li Y, Ullah I, Zhao Y, Ren X, Tong L, Li X, Zheng Y, Chu PK, Wang H. Balancing the anti-bacterial and pro-osteogenic properties of Ti-based implants by partial conversion of ZnO nanorods into hybrid zinc phosphate nanostructures. Adv Funct Mater, 2024, 34 2311812

[52]

Hang R, Zhao F, Yao X, Tang B, Chu PK. Self-assembled anodization of NiTi alloys for biomedical applications. Appl Surf Sci, 2020, 517 146118

[53]

Wu S-C, Chang W-H, Dong G-C, Chen K-Y, Chen Y-S, Yao C-H. Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds. J Bioact Compat Polym, 2011, 26: 565

[54]

Zhao F, Jia Z, Zhang L, Liu G, Li J, Zhao J, Xie Y, Chen L, Jiang H, He W, Wang A, Peng J, Zheng Y. A MnO2 nanosheets doping double crosslinked hydrogel for cartilage defect repair through alleviating inflammation and guiding chondrogenic differentiation. Biomaterials, 2025, 314 122875

[55]

Xie E, Zhang X, Zhou Y, Yang Y, Lin Y, Niu Y, Wei J, Li D. A polyphenol–metal network of propyl gallate gallium/hafnium oxide on polyimide fibers for facilitating ligament–bone healing. Adv Fiber Mater, 2024, 7: 296

[56]

Li R, Li D, Wu C, Ye L, Wu Y, Yuan Y, Yang S, Xie L, Mao Y, Jiang T. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics, 2020, 10: 1649

[57]

Yu H, Huang T, Lu M, Mao M, Zhang Q, Wang H. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology, 2013, 24 405401

[58]

Lee Y-S, Collins G, Arinzeh TL. Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomater, 2011, 7: 3877

[59]

Zheng T, Yu Y, Pang Y, Zhang D, Wang Y, Zhao H, Zhang X, Leng H, Yang X, Cai Q. Improving bone regeneration with composites consisting of piezoelectric poly (l-lactide) and piezoelectric calcium/manganese co-doped barium titanate nanofibers. Compos B, 2022, 234 109734

[60]

Yang Y, Peng S, Qi F, Zan J, Liu G, Zhao Z, Shuai C. Graphene-assisted barium titanate improves piezoelectric performance of biopolymer scaffold. Mater Sci Eng: C, 2020, 116 111195

[61]

Wang W, Li K, Ma W, Li Y, Liu F, Kong Y, Wang L, Yi F, Sang Y, Li G, Liu H, Qiu J. Ultrasound-activated piezoelectric nanostickers for neural stem cell therapy of traumatic brain injury. Nat Mater, 2025

[62]

Zhang H, Xu D, Zhang B, Li X, Li M, Zhang C, Wang H, Zhao Y, Chai R. PEDOT-integrated fish swim bladders as conductive nerve conduits. Adv Sci, 2024, 11 2400827

[63]

Chu X-L, Song X-Z, Li Q, Li Y-R, He F, Gu X-S, Ming D. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res, 2022, 17: 2185

Funding

Beijing Natural Science Foundation(L244003)

the National Natural Science Foundation of China(52273119)

Key Research and Development Projects of People's Liberation Army(BWS17J036)

the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities)(FRF-IDRY-23-019)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

/