Nanocarbon Supporting Porous Porphyrin-Ru-Functionalized Vascular Grafts for Antioxidative Stress, Anti-inflammation, and Prorepair of Blood Vessel Injury

Jianmei Ren , Guliyaer Aini , Xuelan Lei , Heng Yang , Jiusi Guo , Hongju Zhou , Yuting Tan , Yang Gao , Chong Cheng , Li Qiu , Lang Ma

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) : 1909 -1928.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) :1909 -1928. DOI: 10.1007/s42765-025-00589-8
Research Article
research-article

Nanocarbon Supporting Porous Porphyrin-Ru-Functionalized Vascular Grafts for Antioxidative Stress, Anti-inflammation, and Prorepair of Blood Vessel Injury

Author information +
History +
PDF

Abstract

Vascular grafts are commonly used to treat acute injuries and chronic atherosclerotic diseases of the vasculature. However, the pathological environment of injured vessels is characterized by oxidative stress and severe inflammatory flares, which usually lead to insufficient vascular regeneration and poor pathological remodeling, with far from satisfactory graft results. Here, we innovatively engineered a nanocarbon supporting porous Ru-porphyrin-based nanobiocatalyst functionalized vascular graft (SPPorRu@PCL) via electrospinning technology. Our studies demonstrate that the SPPorRu@PCL has ultrafast and broad-spectrum reactive oxygen species (ROS) scavenging ability due to the highly active π-conjugated Ru–N catalytic site, π–π stacking effect, and porous structure of loaded SPPorRu, which synergistically enhances its electron transfer ability and catalytic kinetics. Strikingly, in vitro cellular experiments demonstrate that the SPPorRu@PCL is effective in alleviating oxidative stress, reducing damage of DNA and mitochondrial, and promoting cell adhesion for human umbilical vein endothelial cells in a high-ROS environment. Implantation of SPPorRu@PCL in vascular-injured rats further demonstrates its superior biocompatibility, anti-inflammatory and provascular repair capabilities. This work provides important insights into the application of the porous nanocarbon and the π-conjugated porphyrin-based Ru–N coordination nanobiocatalyst assembled on nanocarbons in catalytically scavenging ROS and offers new strategies to design high-performance artificial antioxidant functionalized vascular grafts for the treatment of blood vessel injury diseases.

Graphical Abstract

Keywords

Artificial antioxidase / Nanobiocatalyst / Reactive oxygen species / Vascular graft / Anti-inflammation

Cite this article

Download citation ▾
Jianmei Ren, Guliyaer Aini, Xuelan Lei, Heng Yang, Jiusi Guo, Hongju Zhou, Yuting Tan, Yang Gao, Chong Cheng, Li Qiu, Lang Ma. Nanocarbon Supporting Porous Porphyrin-Ru-Functionalized Vascular Grafts for Antioxidative Stress, Anti-inflammation, and Prorepair of Blood Vessel Injury. Advanced Fiber Materials, 2025, 7(6): 1909-1928 DOI:10.1007/s42765-025-00589-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, Mente A, Yusuf S. Reducing the global burden of cardiovascular disease, part 1 the epidemiology and risk factors. Circ Res, 2017, 121: 677

[2]

Strongman H, Gadd S, Matthews AA, Mansfield KE, Stanway S, Lyon AR, dos-Santos-Silva I, Smeeth L, Bhaskaran K. Does cardiovascular mortality overtake cancer mortality during cancer survivorship?: An English retrospective cohort study. JACC CardioOncol, 2022, 4: 113

[3]

Wanhainen A, Van Herzeele I, Goncalves FB, Montoya SB, Berard X, Boyle JR, D'Oria M, Prendes CF, Karkos CD, Kazimierczak A, Koelemay MJW, Koelbel T, Mani K, Melissano G, Powell JT, Trimarchi S, Tsilimparis N, Comm EG. European society for vascular surgery (ESVS) 2024 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vasc Endovasc Surg, 2024, 67: 192

[4]

Naegeli KM, Kural MH, Li YL, Wang J, Hugentobler EA, Niklason LE. Bioengineering human tissues and the future of vascular replacement. Circ Res, 2022, 131: 109

[5]

Qiu XF, Lee BLP, Wong SY, Ding XL, Xu K, Zhao W, Wang D, Sochol R, Dong NG, Li S. Cellular remodeling of fibrotic conduit as vascular graft. Biomater Sci, 2021, 268 120565

[6]

Loupy A, Goutaudier V, Giarraputo A, Mezine F, Morgand E, Robin B, Khalil K, Mehta S, Keating B, Dandro A, Certain A, Tharaux P-L, Narula N, Tissier R, Giraud S, Hauet T, Pass HI, Sannier A, Wu M, Griesemer A, Ayares D, Tatapudi V, Stern J, Lefaucheur C, Bruneval P, Mangiola M, Montgomery RA. Immune response after pig-to-human kidney xenotransplantation: a multimodal phenotyping study. Lancet, 2023, 402: 1158

[7]

Faturechi R, Hashemi A, Abolfathi N, Solouk A. Mechanical guidelines on the properties of human healthy arteries in the design and fabrication of vascular grafts: experimental tests and quasi-linear viscoelastic model. Acta Bioeng Biomech, 2019, 21: 13

[8]

Faturechi R, Hashemi A, Abolfathi N, Solouk A, Seifalian A. Fabrications of small diameter compliance bypass conduit using electrospinning of clinical grade polyurethane. Vascular, 2019, 27: 636

[9]

Wang D, Xu Y, Lin Y-J, Yilmaz G, Zhang J, Schmidt G, Li Q, Thomson JA, Turng L-S. Biologically functionalized expanded polytetrafluoroethylene blood vessel grafts. Biomacromol, 2020, 21: 3807

[10]

Beerkens FJ, Claessen BE, Mahan M, Gaudino MFL, Tam DY, Henriques JPS, Mehran R, Dangas GD. Contemporary coronary artery bypass graft surgery and subsequent percutaneous revascularization. Nat Rev Cardiol, 2022, 19: 195

[11]

Lee KS, Kayumov M, Emechebe GA, Kim D-W, Cho H-J, Jeong Y-J, Lee D-W, Park J-K, Park C-H, Kim C-S, Obiweluozor FO, Jeong I-S. A comparative study of an anti-thrombotic small-diameter vascular graft with commercially available e-PTFE graft in a porcine carotid model. Tissue Eng Regen Med, 2022, 19: 537

[12]

Liu C, Gao H, Sun G, Jiang X, Song S, Zhang J, Shen J. Decellularized scaffold-based artificial vascular patch for porcine vascular repair. ACS Appl Bio Mater, 2023, 6: 1071

[13]

Wang ZH, Liu CG, Xiao Y, Gu X, Xu Y, Dong NG, Zhang SM, Qin QH, Wang JL. Remodeling of a cell-free vascular graft with nanolamellar intima into a neovessel. ACS Nano, 2019, 13: 10576

[14]

Babu R, Reshmi CR, Joseph J, Sathy BN, Nair SV, Varma PK, Menon D. Design, development, and evaluation of an interwoven electrospun nanotextile vascular patch. Macromol Mater Eng, 2021, 306 2100359

[15]

Zhang Y, Xu K, Zhi D, Qian M, Liu K, Shuai Q, Qin Z, Xie J, Wang K, Yang J. Improving vascular regeneration performance of electrospun poly(ε-caprolactone) vascular grafts via synergistic functionalization with VE-Cadherin/VEGF. Adv Fiber Mater, 2022, 4: 1685

[16]

Synofzik J, Heene S, Jonczyk R, Blume C. Ink-structing the future of vascular tissue engineering: a review of the physiological bioink design. Bio-Des Manuf, 2024, 7: 181

[17]

Su HX, Li QT, Li DG, Li HF, Feng Q, Cao XD, Dong H. A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds via combination of 3D printing and stimuli-responsive hydrogels. Mater Horiz, 2022, 9: 2393

[18]

Zou S, Fan S, Oliveira AL, Yao X, Zhang Y, Shao H. 3D printed gelatin scaffold with improved shape fidelity and cytocompatibility by using antheraea pernyi silk fibroin nanofibers. Adv Fiber Mater, 2022, 4: 758

[19]

Akentjew TL, Terraza C, Suazo C, Maksimcuka J, Wilkens CA, Vargas F, Zavala G, Ocaña M, Enrione J, García-Herrera CM, Valenzuela LM, Blaker JJ, Khoury M, Acevedo JP. Rapid fabrication of reinforced and cell-laden vascular grafts structurally inspired by human coronary arteries. Nat Commun, 2019, 10: 3098

[20]

Nasiri B, Row S, Smith RJ, Swartz DD, Andreadis ST. Cell-free vascular grafts that grow with the host. Adv Funct Mater, 2020, 30 2005769

[21]

Liu Y, Guo Q, Zhang X, Wang Y, Mo X, Wu T. Progress in electrospun fibers for manipulating cell behaviors. Adv Fiber Mater, 2023, 5: 1241

[22]

Dobrzynska-Mizera M, Dodda JM, Liu X, Knitter M, Oosterbeek RN, Salinas P, Pozo E, Ferreira AM, Sadiku ER. Engineering of bioresorbable polymers for tissue engineering and drug delivery applications. Adv Funct Mater, 2024, 13: 2401674

[23]

Wu J, Chen Y, Liu X, Liu S, Deng L, Tang K. Human acellular amniotic membrane/polycaprolactone vascular grafts prepared by electrospinning enable vascular remodeling in vivo. Biomed Eng Online, 2024, 23: 112

[24]

Chen Y, Dong X, Shafiq M, Myles G, Radacsi N, Mo X. Recent advancements on three-dimensional electrospun nanofiber scaffolds for tissue engineering. Adv Fiber Mater, 2022, 4: 959

[25]

Su HX, Liu WC, Li XF, Li GX, Guo SQ, Liu C, Yang T, Ou CB, Liu JH, Li YZ, Wei CC, Huang Q, Xu T, Duan CZ. Cellular energy supply for promoting vascular remodeling of small-diameter vascular grafts: a preliminary study of a new strategy for vascular graft development. Biomater Sci, 2023, 11: 3197

[26]

Yi BC, Shen YB, Tang H, Wang XL, Zhang YZ. Stiffness of the aligned fibers affects structural and functional integrity of the oriented endothelial cells. Acta Biomater, 2020, 108: 237

[27]

Zhou MX, Wang ZH, Li MY, Chen Q, Zhang SM, Wang JL. Passivated hydrogel interface: armor against foreign body response and inflammation in small-diameter vascular grafts. Biomater Sci, 2025, 317: 123010

[28]

Liu Y, Li L, Wang Z, Zhang J, Zhou Z. Myocardial ischemia-reperfusion injury; molecular mechanisms and prevention. Microvasc Res, 2023, 149 104565

[29]

Fu X, Wang J, Qian D, Xi L, Chen L, Du Y, Cui W, Wang Y. Oxygen atom-concentrating short fibrous sponge regulates cellular respiration for wound healing. Adv Fiber Mater, 2023, 5: 1773

[30]

Lei XG, Zhu JH, Cheng WH, Bao YP, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol Rev, 2016, 96: 307

[31]

Tang GH, He JY, Liu JW, Yan XY, Fan KL. Nanozyme for tumor therapy: surface modification matters. Exploration, 2021, 1: 75

[32]

Huang YY, Ren JS, Qu XG. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev, 2019, 119: 4357

[33]

Wang LY, Zhu BH, Deng YT, Li TT, Tian QY, Yuan ZG, Ma L, Cheng C, Guo QY, Qiu L. Biocatalytic and antioxidant nanostructures for ROS scavenging and biotherapeutics. Adv Funct Mater, 2021, 31 2101804

[34]

Sun YM, Mu SD, Xing ZY, Guo JS, Wu ZH, Yu FY, Bai MR, Han XL, Cheng C, Ye L. Catalase-mimetic artificial biocatalysts with Ru catalytic centers for ROS elimination and stem-cell protection. Adv Mater, 2022, 34 2206208

[35]

Chen GS, Huang SM, Kou XX, Zhu F, Ouyang GF. Embedding functional biomacromolecules within peptide-directed metal-organic framework (MOF) nanoarchitectures enables activity enhancement. Angew Chem Int Ed, 2020, 59: 13947

[36]

Yang DM, Yuan MJ, Huang JB, Xiang X, Pang HQ, Wei Q, Luo XL, Cheng C, Qiu L, Ma L. Conjugated network supporting highly surface-exposed Ru site-based artificial antioxidase for efficiently modulating microenvironment and alleviating solar dermatitis. ACS Nano, 2024, 18: 3424

[37]

Bai M, Wang T, Xing Z, Huang H, Wu X, Adeli M, Wang M, Han X, Ye L, Cheng C. Electron-donable heterojunctions with synergetic Ru-Cu pair sites for biocatalytic microenvironment modulations in inflammatory mandible defects. Nat Commun, 2024, 15: 9592

[38]

Yang B, Yao H, Yang J, Chen C, Shi J. Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nat Commun, 2022, 13: 1988

[39]

Xiang K, Wu H, Liu Y, Wang S, Li X, Yang B, Zhang Y, Ma L, Lu G, He L, Ni Q, Zhang L. MOF-derived bimetallic nanozyme to catalyze ROS scavenging for protection of myocardial injury. Theranostics, 2023, 13: 2721

[40]

Lin HB, Huang WZ, Rong HB, Hu JN, Mai SW, Xing LD, Xu MQ, Li XP, Li WS. Surface natures of conductive carbon materials and their contributions to charge/discharge performance of cathodes for lithium ion batteries. J Power Sources, 2015, 287: 276

[41]

Park K, An S, Kim J, Yoon S, Song J, Jung D, Park J, Lee Y, Son D, Seo J. Resealable antithrombotic artificial vascular graft integrated with a self-healing blood flow sensor. ACS Nano, 2023, 17: 7296

[42]

Liu JM, He LH, Tao Z, Li SZ, Wang CB, Zhang YP, Zhang S, Du M, Zhang ZH. Ferric oxide nanocrystals-embedded Co/Fe-MOF with self-tuned d-band centers for boosting urea-assisted overall water splitting. Small, 2024, 20: 2306273

[43]

Huang XT, Zhou HJ, Lv N, Zhao ZY, Tian T, Huang JY, Rodriguez RD, Luo H, Cheng C, Ma L. Immunomodulating sonocatalytic nanoagents with dual-functional Ir-N centers and narrow bandgap for reversing immunosuppression and potentiating ovarian cancer immunotherapy. Adv Funct Mater, 2024, 34 2407349

[44]

Socaci C, Pogacean F, Bins AR, Coros M, Rosu MC, Magerusan L, Katona G, Pruneanu S. Graphene oxide vs. reduced graphene oxide as carbon support in porphyrin peroxidase biomimetic nanomaterials. Talanta, 2016, 148: 511

[45]

Zhu PH, Li SS, Zhao CR, Zhang Y, Yu JH. 3D synergistical rGO/Eu(TPyP)(Pc) hybrid aerogel for high-performance NO2 gas sensor with enhanced immunity to humidity. J Hazard Mater, 2020, 384 121426

[46]

Huang ZQ, Zhang YW, Liu RH, Li Y, Rafique M, Midgley AC, Wan Y, Yan HY, Si JH, Wang T, Chen CH, Wang P, Shafiq M, Li J, Zhao LL, Kong DL, Wang K. Cobalt loaded electrospun poly(ε-caprolactone) grafts promote antibacterial activity and vascular regeneration in a diabetic rat model. Biomaterials, 2022

[47]

Jiang B, Duan DM, Gao LZ, Zhou MJ, Fan KL, Tang Y, Xi JQ, Bi YH, Tong Z, Gao GF, Xie N, Tango A, Nie GH, Liang MM, Yan XY. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc, 2018, 13: 1506

[48]

Yang CD, Wu ZH, Zhao ZY, Gao Y, Ma T, He C, Wu CZ, Liu XK, Luo XL, Li S, Cheng C, Zhao CS. Electronic structure-dependent water-dissociation pathways of ruthenium-based catalysts in alkaline H2-evolution. Small, 2023, 19: 2206949

[49]

Wang XY, Yang XW, Zhao C, Pi YT, Li XB, Jia ZF, Zhou S, Zhao JJ, Wu LM, Liu J. Ambient preparation of benzoxazine-based phenolic resins enables long-term sustainable photosynthesis of hydrogen peroxide. Angew Chem Int Ed, 2023, 62 e202302829

[50]

Liu R, Chen Y, Yu H, Položij M, Guo Y, Sum TC, Heine T, Jiang D. Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat Catal, 2024, 7: 195

[51]

Wang T, Bai M, Geng W, Adeli M, Ye L, Cheng C. Bioinspired artificial antioxidases for efficient redox homeostasis and maxillofacial bone regeneration. Nat Commun, 2025, 16: 856

[52]

Deng Y, Gao Y, Li T, Xiao S, Adeli M, Rodriguez RD, Geng W, Chen Q, Cheng C, Zhao C. Amorphizing metal selenides-based ROS biocatalysts at surface nanolayer toward ultrafast inflammatory diabetic wound healing. ACS Nano, 2023, 17: 2943

[53]

Singh N, Geethika M, Eswarappa SM, Mugesh G. Manganese-based nanozymes: multienzyme redox activity and effect on the nitric oxide produced by endothelial nitric oxide synthase. Chem-Eur J, 2018, 24: 8393

[54]

Zheng H, Huang S, Wei G, Sun Y, Li C, Si X, Chen Y, Tang Z, Li X, Chen Y, Liao W, Liao Y, Bin J. CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Mol Ther, 2022, 30: 3477

[55]

Cojocaru K-A, Luchian I, Goriuc A, Antoci L-M, Ciobanu C-G, Popescu R, Vlad C-E, Blaj M, Foia LG. Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. Antioxidants, 2023, 12: 658

[56]

Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol, 2023, 97: 2499

[57]

Deng Y, Ediriwickrema A, Yang F, Lewis J, Girardi M, Saltzman WM. A sunblock based on bioadhesive nanoparticles. Nat Mater, 2015, 14: 1278

[58]

Qi L, Huang Y, Liu Z, Liu J, Wang J, Xu H, Yang H, Liu L, Feng G, Zhang S, Li Y, Zhang L. Multidimensionally nano-topologized polycaprolactone fibrous membrane anchored with bimetallic peroxide nanodots for microenvironment-switched treatment on infected diabetic wounds. Adv Fiber Mater, 2024, 6: 1777

[59]

Huang J, Wu J, Wang J, Xu M, Jiao J, Qiang Y, Zhang F, Li Z. Rock climbing-inspired electrohydrodynamic cryoprinting of micropatterned porous fiber scaffolds with improved MSC therapy for wound healing. Adv Fiber Mater, 2023, 5: 312

[60]

Nakkala JR, Duan YY, Ding J, Muhammad W, Zhang DT, Mao ZW, Ouyang HW, Gao CY. Macrophage membrane-functionalized nanofibrous mats and their immunomodulatory effects on macrophage polarization. Acta Biomater, 2022, 141: 24

[61]

Wang Z, Cui Y, Wang J, Yang X, Wu Y, Wang K, Gao X, Li D, Li Y, Zheng X-L, Zhu Y, Kong D, Zhao Q. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials, 2014, 35: 5700

Funding

National Natural Science Foundation of China(82371976)

Post-Doctor Research Project, West China Hospital, Sichuan University(2024HXBH051)

China Postdoctoral Science Foundation(2024M762250)

Sichuan Science and Technology Program(2024YFHZ0271)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

/