Surface Coatings of Glass Fiber: Exploring Emerging Functionalities and Beyond

Jianzhong Zhang , Sheng Xu , Jiashu Fan , Kun Wang , Jian Huang , Jihui Wang , Shiliang Zhang , Guangming Tao , Zhi-Jian Zhang

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) : 1731 -1765.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) :1731 -1765. DOI: 10.1007/s42765-025-00587-w
Review
review-article

Surface Coatings of Glass Fiber: Exploring Emerging Functionalities and Beyond

Author information +
History +
PDF

Abstract

Glass fiber (GF), with exceptional mechanical properties and thermal stability, has garnered increasing attention in composite materials, electronics, aerospace, and other industries. The surface characteristics of GFs are crucial in determining their interfacial bonding within composites, environmental adaptability, and multifunctionality. Consequently, coating technologies designed to enhance the functionality of GFs have become essential for expanding their range of applications. This review provides a comprehensive overview of the latest advancements in surface coating engineering of GFs, focusing on various types of coating materials, including inorganic, organic, nano, and composite coatings. Through analyzing representative case studies, the review describes the diverse functionalities of these coating materials, such as enhanced interfacial bonding strength, improved flame retardancy, and the integration of multiple functions, including electromagnetic shielding, electrothermal properties, battery separators, and catalytic degradation. The application effectiveness and potential of each coating type are summarized. Finally, the review addresses the challenges and future development trends of surface coatings for GFs. This article aims to establish a theoretical foundation for future research on GF coatings and provides valuable insights for the innovative application of GFs in emerging fields.

Keywords

Glass fiber / Surface coating / Inorganic coating / Organic coating / Nano-coatings / Composite material

Cite this article

Download citation ▾
Jianzhong Zhang, Sheng Xu, Jiashu Fan, Kun Wang, Jian Huang, Jihui Wang, Shiliang Zhang, Guangming Tao, Zhi-Jian Zhang. Surface Coatings of Glass Fiber: Exploring Emerging Functionalities and Beyond. Advanced Fiber Materials, 2025, 7(6): 1731-1765 DOI:10.1007/s42765-025-00587-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sathishkumar TP, Satheeshkumar S, Naveen J. Glass fiber-reinforced polymer composites–a review. J Reinf Plast Compos, 2014, 33: 1258

[2]

Rani M, Choudhary P, Krishnan V, Zafar S. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Compos Part B Eng, 2021, 215 108768

[3]

Chu P, Iwasawa S, Schell P, Lin C. Carbon fiber versus glass fiber reinforcements: a novel, true comparison in thermoplastics. Polym Compos, 2021, 42: 6173

[4]

Wu Y, Song Y, Wu D, Mao X, Yang X, Jiang S, Zhang C, Guo R. Recent progress in modifications, properties, and practical applications of glass fiber. Molecules, 2023, 28: 2466

[5]

Deng J, Song Y, Lan Z, Xu Z, Chen Y, Yang B, Hao H. The surface modification effect on the interfacial properties of glass fiber-reinforced epoxy: a molecular dynamics study. Nanotechnol Rev, 2022, 11(1 1143

[6]

Zhang Y, Mi C. Improved hydrothermal aging performance of glass fiber-reinforced polymer composites via silica nanoparticle coating. J Appl Polym Sci, 2020, 137 48652

[7]

Liu X, Chen H, Kou W, Zhang D. Robust anti-icing coatings via enhanced superhydrophobicity on fiberglass cloth. Cold Reg Sci Technol, 2017, 138: 18

[8]

Parizi MJG, Shahverdi H, Roa JJ, Pipelzadeh E, Martínez M, Cabot A, Guardia P. Improving mechanical properties of glass fiber reinforced polymers through silica-based surface nanoengineering. ACS Appl Polym Mater, 2020, 2: 2667

[9]

Lin C, Chang C, Chang Y, Lee J, Hwa M, Lee Y. Glass fibers covered with TiO2 thin films by sol-gel method as a photocatalyst reactor to degradation toluene. Adv Mater Res, 2009, 79–82: 927

[10]

Chen L, Yang S, Mäder E, Ma P. Controlled synthesis of hierarchical TiO2 nanoparticles on glass fibers and their photocatalytic performance. Dalton Trans, 2014, 43: 12743

[11]

Palau J, Colomer M, Penya-Roja JM, Martínez-Soria V. Photodegradation of toluene, m-xylene, and n-butyl acetate and their mixtures over TiO2 catalyst on glass fibers. Ind Eng Chem Res, 2012, 51: 5986

[12]

Belkessa N, Serhane Y, Bouzaza A, Khezami L, Assadi AA. Gaseous ethylbenzene removal by photocatalytic TiO2 nanoparticles immobilized on glass fiber tissue under real conditions: evaluation of reactive oxygen species contribution to the photocatalytic process. Environ Sci Pollut Res, 2023, 30: 35745

[13]

Fukugaichi S, Henmi T, Matsue N. Facile synthesis of TiO2−zeolite composite and its enhanced photocatalytic activity. Catal Lett, 2013, 143: 1255

[14]

Fukugaichi S. Fixation of titanium dioxide nanoparticles on glass fiber cloths for photocatalytic degradation of organic dyes. ACS Omega, 2019, 4: 15175

[15]

Jiang Y, Xu J, Yu Z, Liu L, Chu H. Improving conductivity and self-sensing properties of magnetically aligned electroless nickel coated glass fiber cement. Cem Concr Compos, 2023, 137 104929

[16]

Zuo J, Chen S, Luo C, Chen D. Preparation of electroless copper coated glass fiber and piezoresistive properties of copper coated glass fiber reinforced plastics. Appl Surf Sci, 2015, 349: 319

[17]

Khuje S, Zhu L, Yu J, Ren S. Copper-coated e-glass fiber-based strain sensors for high temperatures. ACS Appl Electron Mater, 2024, 6: 8226

[18]

Ávila-López MA, Luévano-Hipólito E, Torres-Martínez LM. CuO coatings on glass fibers: a hybrid material for CO2 adsorption and photocatalytic reduction to solar fuels. J Mater Sci-Mater Electron, 2020, 31: 13957

[19]

Zhou R, Chen H, Xu C, Hou X, Liu G, Liu Y. Facile synthesis of electromagnetic Ni@glass fiber composites via electroless deposition method. J Mater Sci-Mater Electron, 2015, 26: 3530

[20]

Xu Y, Yang Y, Yan D, Duan H, Dong C, Zhao G, Liu Y. Anisotropically conductive polypropylene/nickel coated glass fiber composite via magnetic field inducement. J Mater Sci-Mater Electron, 2017, 28: 9126

[21]

Duan H, Yang J, Yang Y, Zhao G, Liu Y. TiO2 hybrid polypropylene/nickel coated glass fiber conductive composites for highly efficient electromagnetic interference shielding. J Mater Sci-Mater Electron, 2017, 28: 5725

[22]

Sun C, Zhang J, Gao S-L, Zhang N, Zhang Y-J, Zhuang J, Liu M, Zhang X-H, Ren W, Wu H, Ye Z-G. Achieving higher strength and sensitivity toward UV light in multifunctional composites by controlling the thickness of nanolayer on the surface of glass fiber. ACS Appl Mater Interfaces, 2018, 10: 23399

[23]

Ye T, Huang Z, Zhu Z, Deng D, Zhang R, Chen H, Kong J. Surface-enhanced Raman scattering detection of dibenzothiophene and its derivatives without π acceptor compound using multilayer Ag NPs modified glass fiber paper. Talanta, 2020, 220 121357

[24]

Sun Z, Kong Y, Lan L, Meng Y, You T, Pauer R, Wang H, Zhang Y, Tang M, deMello A, Liang Y, Hu J, Wang J. A high efficiency, low resistance antibacterial filter formed by dopamine-mediated in situ deposition of silver onto glass fibers. Small, 2024, 20: 2301074

[25]

Retailleau C, Alaa-Eddine J, Ndagijimana F, Alcouffe P, Cavetier L, Fumagalli M, Bounor-Legaré V, Serghei A. Ionic liquid driven enhancement in the electromagnetic interference shielding effectiveness of poly (methyl-methacrylate)-based composite materials filled with hybrid silver-coated glass microfibers. Macromol Mater Eng, 2022, 307 2100759

[26]

Lee J, Jung B-M, Lee S-B, Lee S-K, Kim K-H. FeCoNi coated glass fibers in composite sheets for electromagnetic absorption and shielding behaviors. Appl Surf Sci, 2017, 415: 99

[27]

Shang J, Yu W, Wang L, Xie C, Xu H, Wang W, Huang Q, Zheng Z. Metallic glass-fiber fabrics: a new type of flexible, super-lightweight, and 3D current collector for lithium batteries. Adv Mater, 2023, 35: 2211748

[28]

Hao Y, Liu F, Han E-H. Protection of epoxy coatings containing polyaniline modified ultra-short glass fibers. Prog Org Coat, 2013, 76: 571

[29]

Ren D, Li K, Chen L, Chen S, Han M, Xu M, Liu X. Modification on glass fiber surface and their improved properties of fiber-reinforced composites via enhanced interfacial properties. Compos Part B Eng, 2019, 177 107419

[30]

Jing M, Che J, Xu S, Liu Z, Fu Q. The effect of surface modification of glass fiber on the performance of poly (lactic acid) composites: graphene oxide vs. silane coupling agents. Appl Surf Sci, 2018, 435: 1046

[31]

Zhang J, Xu S, Fan J, Fei Z, Wang K, Huang J, Cui F, Ran W. Progress in characterization and analysis of glass fiber sizing. Chem Ind Eng Prog, 2023, 42: 821

[32]

Cech V, Knob A, Hosein H-A, Babik A, Lepcio P, Ondreas F, Drzal L-T. Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification. Compos Part A Appl Sci Manuf, 2014, 58: 84

[33]

Liu W, Zhu Y, Qian C, Dai H, Fu Y, Dong Y. Interfacial modification between glass fiber and polypropylene using a novel waterborne amphiphilic sizing agent. Compos Part B-Eng, 2022, 241 110029

[34]

Zhu Y, Liu W, Dai H, Zhang F. Synthesis of a self-assembly amphiphilic sizing agent by RAFT polymerization for improving the interfacial compatibility of short glass fiber-reinforced polypropylene composites. Compos Sci Technol, 2022, 218 109181

[35]

Wang X, Ding S, Qiu L, Ashour A, Wang Y, Han B, Ou J. Improving bond of fiber-reinforced polymer bars with concrete through incorporating nanomaterials. Compos Part B-Eng, 2022, 239 109960

[36]

An Q, Tamrakar S, Gillespie J-WJr, Rider A-N, Thostenson E-T. Tailored glass fiber interphases via electrophoretic deposition of carbon nanotubes: fiber and interphase characterization. Compos Sci Technol, 2018, 166: 131

[37]

Escorcia-Díaz D, García-Mora S, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C. Advancements in nanoparticle deposition techniques for diverse substrates: a review. Nanomaterials, 2023, 13: 2586

[38]

Mohd Nurazzi N, Asyraf MRM, Khalina A, Abdullah N, Sabaruddin FA, Kamarudin SH, Ahmad S, Mahat AM, Lee CL, Aisyah HA, Norrrahim MNF, Ilyas RA, Harussani MM, Ishak MR, Sapuan SM. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: an overview. Polymers, 2021, 13: 1047

[39]

Ku-Herrera JJ, Avilés F, Nistal A, Cauich-Rodríguez JV, Rubio F, Rubio J, Bartolo-Pérez P. Interactions between the glass fiber coating and oxidized carbon nanotubes. Appl Surf Sci, 2015, 330: 383

[40]

Tzounis L, Zappalorto M, Panozzo F, Tsirka K, Maragoni L, Paipetis A-S, Quaresimin M. Highly conductive ultra-sensitive SWCNT-coated glass fiber reinforcements for laminate composites structural health monitoring. Compos Part B Eng, 2019, 169: 37

[41]

Tzounis L, Kirsten M, Simon F, Mäder E, Stamm M. The interphase microstructure and electrical properties of glass fibers covalently and non-covalently bonded with multiwall carbon nanotubes. Carbon, 2014, 73: 310

[42]

Rahaman A, Kar KK. Carbon nanomaterials grown on E-glass fibers and their application in composite. Compos Sci Technol, 2014, 101: 1

[43]

He D, Fan BH, Zhao H, Lu X, Yang M, Liu Y, Bai J. Design of electrically conductive structural composites by modulating aligned. ACS Appl Mater Interfaces, 2017, 9: 2948

[44]

Rahmanian S, Thean KS, Suraya AR, Shazed MA, Mohd Salleh MA, Yusoff HM. Carbon and glass hierarchical fibers: influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites. Mater Des, 2013, 43: 10

[45]

Zhang J, Zhuang R, Liu J, Mäder E, Heinrich G, Gao S. Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites. Carbon, 2010, 48: 2273

[46]

Tamrakar S, An Q, Thostenson ET, Rider AN, Haque BZ, Gillespie JWJr.. Tailoring interfacial properties by controlling carbon nanotube coating thickness on glass fibers using electrophoretic deposition. ACS Appl Mater Interfaces, 2016, 8: 1501

[47]

An Q, Rider AN, Thostenson ET. Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers. ACS Appl Mater Interfaces, 2013, 5: 2022

[48]

Wang Y, Hui Y, Chen X, Wang Y, Wen K, Cheng S, Song Q, Gao Y, Gao Y, Zhang J, Shao J. Multifunctional MXene/carbon nanotubes coated glass fiber sensors for in-situ monitoring of curing process and structural health of polymeric composites. Chem Eng J, 2024, 497 154386

[49]

Shang Y, Shi B, Doshi SM, Chu T, Qiu G, Du A, Zhao Y, Xu F, Thostenson ET, Fu K. Rapid nanowelding of carbon coatings onto glass fibers by electrothermal shock. ACS Appl Mater Interfaces, 2020, 12: 37722

[50]

Islam MH, Afroj S, Uddin MA, Andreeva DV, Novoselov KS, Karim N. Graphene and CNT-based smart fiber-reinforced composites: a review. Adv Funct Mater, 2022, 32: 2205723

[51]

Kumar J, Verma RK, Khare P. Graphene-functionalized carbon/glass fiber reinforced polymer nanocomposites: fabrication and characterization for manufacturing applications. Handbook of Functionalized Nanomaterials. Elsevier. 2021; pp.57–78.

[52]

Ning N, Zhang W, Yan J, Xu F, Wang T, Su H, Tang C, Fu Q. Largely enhanced crystallization of semi-crystalline polymer on the surface of glass fiber by using graphene oxide as a modifier. Polymer, 2013, 54: 303

[53]

Chen J, Zhao D, Jin X, Wang C, Wang D, Ge H. Modifying glass fibers with graphene oxide: towards high-performance polymer composites. Compos Sci Technol, 2014, 97: 41

[54]

Şahin Dündar G, Saner Okan B. Utilizing upcycled graphene nanoplatelet-coated glass fibers as a performance booster and compatibilizer for enhanced mechanical performance of polypropylene/glass fiber/graphene nanoplatelet composites. ACS Omega, 2024, 917432

[55]

Fang M, Xiong X, Hao Y, Wang H, Li Q, Wang M. Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating method. J Mater Sci Technol, 2019, 35: 1989

[56]

Moriche R, Jiménez-Suárez A, Sánchez M, Prolongo SG, Ureña A. Graphene nanoplatelets coated glass fibre fabrics as strain sensors. Compos Sci Technol, 2017, 146: 59

[57]

Fu YF, Li YQ, Liu YF, Huang P, Hu N, Fu SY. High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite. ACS Appl Mater Interfaces, 2018, 10: 35503

[58]

Liu R, Yuan H, Li J, Huang K, Wang K, Cheng Y, Cheng S, Li W, Jiang J, Tu C, Qi Y, Liu Z. Complementary chemical vapor deposition fabrication for large-area uniform graphene glass fiber fabric. Small Methods, 2022, 6: 2200499

[59]

Cheng Y, Cheng S, Chen B, Jiang J, Tu C, Li W, Yang Y, Huang K, Wang K, Yuan H, Li J, Qi Y, Liu Z. Graphene infrared radiation management targeting photothermal conversion for electric-energy-free crude oil collection. J Am Chem Soc, 2022, 144: 15562

[60]

Wang K, Sun X, Cheng S, Cheng Y, Huang K, Liu R, Yuan H, Li W, Liang F, Yang Y, Yang F, Zheng K, Liang Z, Tu C, Liu M, Ma M, Ge Y, Jian M, Yin W, Qi Y, Liu Z. Multispecies-coadsorption-induced rapid preparation of graphene glass fiber fabric and applications in flexible pressure sensor. Nat Commun, 2024, 15: 5040

[61]

Huang K, Liang F, Sun J, Zhang Q, Li Z, Cheng S, Li W, Yuan H, Liu R, Ge Y, Cheng Y, Wang K, Yang Y, Ma M, Yang F, Tu C, Xie Q, Yin W, Wang X, Qi Y, Liu Z. Overcoming the incompatibility between electrical conductivity and electromagnetic transmissivity: a graphene glass fiber fabric design strategy. Adv Mater, 2024, 36: 2313752

[62]

Yang Y, Yuan H, Cheng Y, Yang F, Liu M, Huang K, Wang K, Cheng S, Liu R, Li W, Liang F, Zheng K, Liu L, Tu C, Wang X, Qi Y, Liu Z. Fluid-dynamics-rectified chemical vapor deposition (CVD) preparing graphene-skinned glass fiber fabric and its application in natural energy harvest. J Am Chem Soc, 2024, 146: 25035

[63]

Liu M, Yang Y, Liu R, Wang K, Cheng S, Liang F, Yuan H, Li W, Cheng Y, Huang K, Yang Y, Tu C, Zheng K, Liu L, Wang X, Qi Y, Liu Z. Carbon nanotubes/graphene-skinned glass fiber fabric with 3D hierarchical electrically and thermally conductive network. Adv Funct Mater, 2024, 34: 2409379

[64]

Li P, Wang Z, Qi Y, Cai G, Zhao Y, Ming X, Lin Z, Ma W, Lin J, Li H, Shen K, Liu Y, Xu Z, Xu Z, Gao C. Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres. Nat Commun, 2024, 15: 409

[65]

Shi H, Wang B, Wang L, Zhang P, Ming X, Hao Y, Lu J, Gao Y, Gao W, Sun H, Li P, Xu Z, Liu Y, Gao C. Large-scale preparation of thermally conductive graphene fiber filaments. Carbon, 2024, 221 118947

[66]

Ming X, Wei A, Liu Y, Huang J, Liao M, Wang L, Zhang H. 2D-topology-seeded graphitization for highly thermally conductive carbon fibers. Adv Mater, 2022, 34: 2201867

[67]

Zhang X, Lei X, Jia X, Sun T, Luo J, Xu S, Li L, Yan D, Shao Y, Yong Z, Zhang Y, Wu X, Gao E, Jian M, Zhang J. Carbon nanotube fibers with dynamic strength up to 14 Gpa. Science, 2024, 384: 1318

[68]

Kim JG, Yun T, Chae J, Yang GG, Lee GS, Kim IH, Jung HJ, Hwang HS, Kim JT, Choi SQ, Kim SO. Molecular-level lubrication effect of 0D nanodiamonds for highly bendable graphene liquid crystalline fibers. ACS Appl Mater Interfaces, 2022, 14: 13601

[69]

Salman A, Sasikala SP, Kim IH, Kim JT, Lee GS, Kim JG, Kim SO. Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors. Nanoscale, 2020, 12(39 20239

[70]

Kim IH, Yun T, Kim JE, Yu H, Sasikala SP, Lee KE, Koo SH, Hwang H, Jung HJ, Park JY, Jeong HS, Kim SO. Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity. Adv Mater, 2018, 30: 1803267

[71]

Sasikala SP, Lee KE, Lim J, Lee HJ, Koo SH, Kim IH, Jung HJ, Kim SO. Interface-confined high crystalline growth of semiconducting polymers at graphene fibers for high-performance wearable supercapacitors. ACS Nano, 2017, 11: 9424

[72]

Wang F, Fang W, Ming X, Liu Y, Xu Z, Gao C. A review on graphene oxide: 2D colloidal molecule, fluid physics, and macroscopic materials. Appl Phys Rev, 2023, 10(1 011311

[73]

Han Z, Wang J, Liu S, Yan Y, Zhang Y, Zhao H, Ming X, Wei A, Liu Y. Electrospinning of neat graphene nanofibers. Adv Fiber Mater, 2022, 4: 268

[74]

Sahu R, Ponnusami SA, Weimer C, Harursampath D. Interface engineering of carbon fiber composites using CNT: a review. Polym Compos, 2024, 45 9

[75]

Yin Q, Wang B, Cai G, Wang Z, Li P, Gao Y, Li K, Ming X, Liu Y, Gao C, Xu Z. Highly thermally conductive composites of graphene fibers. Compos Part A Appl Sci Manuf, 2024, 185 108290

[76]

Mahtar MA, Kinloch IA, Bissett MA. High-performance hybrid glass fibre epoxy composites reinforced with amine functionalised graphene oxide for structural applications. Compos Part A Appl Sci Manuf, 2024, 185 108265

[77]

Zhao J, Zhang S, Ke X, Liu J, Cheng L, Su X, Zhang G, Huang Y, Zhang Z. Simultaneously tuning interfacial and interlaminar properties of glass fiber fabric/epoxy laminated composites via modifying fibers with graphene oxide. Compos Sci Technol, 2023, 235 109970

[78]

Liu S, Wang Y, Ming X, Wei A, Gao C. High-speed blow spinning of neat graphene fibrous materials. Nano Lett, 2021, 21: 5116

[79]

Lu J, Ming X, Cao M, Hui Y, Wang Y, Gao Y, Gao C. Scalable compliant graphene fiber-based thermal interface material with metal-level thermal conductivity via dual-field synergistic alignment engineering. ACS Nano, 2024, 18: 18560

[80]

Norrrahim MNF, Kasim NAM, Knight VF, Mohd Adnan AS, Abdullah CK, Samsudin SA, Sabaruddin FA, Abdul Rahman NA, Razak SIA, Jamaluddin AR, Jaafar M, Ilyas RA. Performance evaluation of cellulose nanofiber-reinforced polymer composites. Funct Compos Struct, 2021, 3 024001

[81]

Sarr MM, Inoue H, Kosaka T. Study on the improvement of interfacial strength between glass fiber and matrix resin by grafting cellulose nanofibers. Compos Sci Technol, 2021, 211 108853

[82]

Gao X, Cheng L, Tan J, Wu S, Jiang Y, Zhou H, Wang Q. Conductive nanocarbon-coated glass fibers. J Phys Chem C Nanomater Interfaces, 2020, 124: 17806

[83]

Jiang J, Cheng Y, Sun X, Tu C, Li W, Yuan H, Liu R, Huang K, Wang K, Cheng S, Qi Y, Liu Z. Flexible full-surface conformal encapsulation for each fiber in graphene glass fiber fabric against thermal oxidation. ACS Appl Mater Interfaces, 2022, 14: 19889

[84]

Yuan J, Zhang Z, Yang M, Feng Y, Xu Z, Liu L. Combined effects of interface modification and micro-filler reinforcements on the thermal and tribological performances of fabric composites. Friction, 2021, 9 1110

[85]

Ying L, Zhu H, Huang H, Tong L, Liu Z, Chen Y. Scalable NiCoxSy-PANI@ GF membranes with broadband light absorption and high salt-resistance for efficient solar-driven interfacial evaporation. ACS Appl Energy Mater, 2021, 4: 3563

[86]

Park B, Lee W, Lee E, Oh K, Kim C, Kim J. Highly tunable interfacial adhesion of glass fiber by hybrid multilayers of graphene oxide and aramid nanofiber. ACS Appl Mater Interfaces, 2015, 7: 3329

[87]

Bai W, Zhai J, Zhou S, Liu Y, Wu Y, Li D. Graphene oxide nanosheets and Ni nanoparticles coated on glass fabrics modified with bovine serum albumin for electromagnetic shielding. ACS Appl Nano Mater, 2022, 5: 8491

[88]

Bompadre F, Scheffler C, Utech T, Hassan MN, Rösch H, Pumberger S, Hempel S, Friedrich K. Polymeric coatings for AR-glass fibers in cement-based matrices: effect of nanoclay on the fiber-matrix interaction. Appl Sci, 2021, 11 5484

[89]

Simonini L, Kakkonen M, Dsouza R, Qian Z, Lee-Sullivan P, Kontturi-Katvala S, Forsyth V, Ujiie H, Salo T. Tailoring the interfacial properties of glass fiber-epoxy microcomposites through the development of a self-healing poly(ε-caprolactone) coating. Compos Sci Technol, 2025, 261 110991

[90]

Zarrini S, Abrams CF. Modeling sizing emulsion droplet deposition onto silica using all-atom molecular dynamics simulations. Compos Part B Eng, 2022, 235 109712

[91]

Chowdhury SC, Prosser R, Sirk TW, Elder RM. Glass fiber-epoxy interactions in the presence of silane: a molecular dynamics study. Appl Surf Sci, 2021, 542 148738

[92]

Yeon J, Chowdhury SC, Gillespie JWJr.. Mechanical properties and damage analysis of S-glass: a reactive molecular dynamics study. Compos Part B Eng, 2022, 234 109706

[93]

Stoffels MT, Staiger MP, Bishop CM. Reduced interfacial adhesion in glass fibre-epoxy composites due to water absorption via molecular dynamics simulations. Compos Part A Appl Sci Manuf, 2019, 118: 99

[94]

Pan L, Guo H, Zhong L, Wang M, Xue P, Yuan X. Influence of surface modified glass fibers on interfacial properties of GF/PEEK composites using molecular dynamics. Comput Mater Sci, 2021, 188 110216

[95]

Shi X, Li X, Li Y, Li Z, Wang D. Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: a review. Compos Part B-Eng, 2022, 233 109663

[96]

Han Y, Xu Y, Liu Y, Wang Q, Zhang Z, Wang Z. An efficient interfacial flame-resistance mode to prepare glass fiber reinforced and flame retarded polyamide 6 with high performance. J Mater Chem A, 2013, 1: 10228

[97]

Liu L, Liu Y, Han Y, Wang Q. Interfacial charring method to overcome the wicking action in glass fiber-reinforced polypropylene composite. Compos Sci Technol, 2015, 121 9

[98]

Chen W, Liu P, Liu Y, Wang Y, Wang Q. Interfacial carbonation for efficient flame retardance of glass fiber-reinforced polyamide 6. Polym Chem, 2015, 6 4409

[99]

Zhu J, Shentu X, Xu X, Yu B, Song L, Wang B. Preparation of graphene oxide modified glass fibers and their application in flame retardant polyamide 6. Polym Adv Technol, 2020, 31: 1709

[100]

Xiao Y, Mu X, Wang B, Liu Y, Ying H, Chen W. A novel phosphorous-containing polymeric compatibilizer: effective reinforcement and flame retardancy in glass fiber reinforced polyamide 6 composites. Compos Part B-Eng, 2021, 205 108536

[101]

Hua Y, Ding B, Jiang S, Wang Q, Zhang Z, Wang Z. Surface modification of glass fibers for flame retardant and reinforced polyamide 6 composites. Compos Commun, 2022, 35 101308

[102]

Merizgui T, Gaoui B, Sebaey TA, Khelifa B, Boussehel H. Electromagnetic shielding behavior of epoxy multi-hybrid composites comprises of E-glass fiber, Ag nanoparticle, and Ni nanosheet: a novel approach. Polym Compos, 2021, 42: 2484

[103]

Liang C, Huo Q, Qi J, Huo H, Ji P, Wang Y, Yang J, Xu X. Robust solid–solid phase change coating encapsulated glass fiber fabric with electromagnetic interference shielding for thermal management and message encryption. Adv Funct Mater, 2024, 34: 2409146

[104]

Wang J, Mao Y, Miljkovic N. Nano-enhanced graphite/phase change material/graphene composite for sustainable and efficient passive thermal management. Adv Sci, 2024, 11 2402190

[105]

Lalire T, Longuet C, Taguet A. Electrical properties of graphene/multiphase polymer nanocomposites: a review. Carbon, 2024, 225 119055

[106]

Yuan H, Zhang H, Huang K, Cheng Y, Wang K, Cheng S, Li W, Jiang J, Li J, Tu C, Wang X, Qi Y, Liu Z. Dual-emitter graphene glass fiber fabric for radiant heating. ACS Nano, 2022, 16: 2577

[107]

Cao B, Qu Q, Jiang B, Zou T, Zhen S, Wang P, Li K, Zhang J, Guo H, Zhang T. Zein improved GF separator for dendrite-free aqueous zinc-ion batteries. J Mater Chem A, 2024, 12: 31185

[108]

Kmiec S, Ruoff E, Darga J, Bodratti A, Manthiram A. Scalable glass-fiber-polymer composite solid electrolytes for solid-state sodium–metal batteries. ACS Appl Mater Interfaces, 2023, 15: 20946

[109]

Wang J, Gao Y, Liu D, Zou G, Li L, Fernandez C, Zhang Q, Peng Q. A sodiophilic amyloid fibril modified separator for dendrite-free sodium-metal batteries. Adv Mater, 2024, 36: 2304942

[110]

Anbunathan A, Karuppiah C, Chang J, Jose R, Yang C. In situ grown ZIF67 particles on a glass fiber separator: the performance booster and anode defender for lithium–sulfurized polyacrylonitrile (SPAN) batteries. ACS Appl Energy Mater, 2023, 6: 3549

[111]

Li R, Xiang T, Wang P, Gong Z, Wu Y, Zhang Y, Shi F, Zhou M. Regulation of the anode electrodeposition behavior of aqueous zinc-ion batteries by an L-alanine-modified glass fiber separator. Ind Eng Chem Res, 2024, 63: 16164

[112]

Kim R, Jung J, Lee JH, Kim ST, Heo J, Shin K, Kim J, Kim HT. Modulated Zn deposition by glass fiber interlayers for enhanced cycling stability of Zn–Br redox flow batteries. ACS Sustain Chem Eng, 2021, 9: 12242

[113]

Ferreira IV, Neng NR, Monteiro OC, Ferreira VC. Immobilisation of ZnO nanoparticles on carbon and on glass fibers for visible light photocatalytic applications. J Photochem Photobiol A-Chem, 2024, 453 115653

[114]

Sun Y, Sun W, Li Y, Dong N, Yu H, Yin W, Zhu F, Gao B, Xu S. Effective inhibition of chloride ion interference in photocatalytic process by negatively charged molecularly imprinted photocatalyst: behavior and mechanism. Water Res, 2024, 262 122040

[115]

Shi H, Peng J, Deng F, Li X, Zou J, Zhang Y, Luo X. Preferential degradation of ofloxacin on all-organic molecularly imprinted PDI/g-C3N4 photocatalyst via specific molecular recognition. Sep Purif Technol, 2025, 353 128499

[116]

Deng G, Xia C, Nie X, Xu S, Zhang C, Fang Y, Zhang R. Highly selective photocatalytic degradation of p-nitrophenol facilitated by photo-sensitive molecularly imprinted polymer nanoparticles and TiO2 nanoparticles. New J Chem, 2025, 49: 979

[117]

Uribe-Riestra G, Ayuso-Faber P, Rivero-Ayala M, Caicedo JM, Barluenga I, Avilés F. Structural health monitoring of carbon nanotube-modified glass fiber-reinforced polymer composites by electrical resistance measurements and digital image correlation. Struct Health Monit, 2024, 23: 555

[118]

Hao B, Ma Q, Yang S, Mäder E, Ma P. Comparative study on monitoring structural damage in fiber-reinforced polymers using glass fibers with carbon nanotubes and graphene coating. Compos Sci Technol, 2016, 129: 38

[119]

Zhao Z, Li M, Liu Y, Ning H, Yang K, Wu C. Structural health monitoring of glass fiber-reinforced polymer laminates with carbon nanotube-coated glass fiber sensing layer after low-velocity impact using electrical resistance tomography. Nanomaterials, 2024, 14: 1462

[120]

Reghat M, Mirabedini A, Tan AM, Weizman Y, Middendorf P, Bjekovic R, Hyde L, Antiohos D, Hameed N, Fuss FK, Fox B. Graphene as a piezo-resistive coating to enable strain monitoring in glass fiber composites. Compos Sci Technol, 2021, 211 108842

[121]

Shen Z, Liu Q, Meng Q, Sun Z, Li Y, Yu E, Shen Y, Liu Q, Ge T, Li J, Yu J, Liu S. Superhydrophobic polysilsesquioxane nanospike/glass microfiber composite for separation of oil–water mixtures. ACS Appl Nano Mater, 2024, 7: 12111

[122]

Liu Q, Patel AA, Liu L. Superhydrophilic and underwater superoleophobic poly(sulfobetaine methacrylate)-grafted glass fiber filters for oil–water separation. ACS Appl Mater Interfaces, 2014, 6: 8996

[123]

Li W, Chu K, Liu L. Multipurpose zwitterionic polymer-coated glass fiber filter for effective separation of oil–water mixtures and emulsions and removal of heavy metals. ACS Appl Polym Mater, 2021, 3: 1276

[124]

Wang X, Zhang Y, Yasin A, Li H, Hao B, Ma PC, Yue X. Polyethylenimine-modified glass fiber by a sulfur-based coupling reaction for selective demulsification of oil/water emulsions. ACS Appl Polym Mater, 2023, 5: 6886

[125]

Gonçalves RM, Martinho A, Oliveira JP. Recycling of reinforced glass fibers waste: current status. Materials, 2022, 15: 1596

Funding

the National Key Research and Development Program of China(2022YFB3805804)

the National Natural Science Foundation of China(T2425018)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

/