Chronologic Analysis of MXene-Functionalized Smart Textiles

Lingyi Bi , Eric M. Gallo , Aditi Maheshwari , Yury Gogotsi , Andreea Danielescu

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) : 1718 -1730.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) :1718 -1730. DOI: 10.1007/s42765-025-00586-x
Review
review-article

Chronologic Analysis of MXene-Functionalized Smart Textiles

Author information +
History +
PDF

Abstract

Since their discovery in 2011, MXenes, two-dimensional transition metal carbides and nitrides, have emerged as highly promising materials for smart textile applications. They offer exceptional properties such as high electrical conductivity, optical tunability, and mechanical flexibility. These materials can also be produced at scale and readily solution-processed into textile formats, fueling a surge of interest in integrating MXenes into various smart textile applications, from strain sensors and wearable biosensors to adaptive thermal management and electromagnetic interference (EMI) shielding. However, despite this rapid growth, existing reviews of MXene-enabled smart textiles remain narrow in scope, often focusing on single fabrication methods or specific functionalities. Such a fragmented perspective makes it difficult for researchers to gain a comprehensive understanding of how the field has evolved and where it is headed. In response, we present a quantitative bibliographic analysis of MXene–textile research from 2017 through 2024, encompassing nearly 1000 publications. This review categorizes the literature by major functional domains (sensing, energy storage/harvesting, EMI shielding, and heating) and examines their shifts over time, providing reasons and examples for these changes in research interest. Additionally, detailed analyses of functions in each category were conducted in a similar fashion. Our holistic, data-driven assessment offers guidance for future research and commercialization of MXene-functionalized smart textiles by identifying high-impact areas, emerging opportunities, and critical gaps.

Keywords

Smart textiles / Multifunctional textiles / MXenes / Quantitative review / Chronologic analysis

Cite this article

Download citation ▾
Lingyi Bi, Eric M. Gallo, Aditi Maheshwari, Yury Gogotsi, Andreea Danielescu. Chronologic Analysis of MXene-Functionalized Smart Textiles. Advanced Fiber Materials, 2025, 7(6): 1718-1730 DOI:10.1007/s42765-025-00586-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kadolph SJ, Marcketti SB. Textiles, 201712Boston, Pearson

[2]

Wicaksono I, Cherston J, Paradiso JA. Electronic textile Gaia: ubiquitous computational substrates across geometric scales. IEEE Pervasive Comput, 2021, 20: 18-29

[3]

Poupyrev I, Gong N-W, Fukuhara S, Karagozler ME, Schwesig C, Robinson KE. Project jacquard: interactive digital textiles at scale. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 2016; 4216.

[4]

Lopez-Jimenez F, Deshmukh A, Bisognano J, Boehmer J, Ramasamy M, Shyam Kumar P, Kapa S, Varadan V, Varadan V, Fudim M. Development and internal validation of an AI-enabled cuff-less, non-invasive continuous blood pressure monitor across all classes of hypertension. J Cardiovasc Transl Res, 2025, 2: 280-290

[5]

Skyrme T. E-textiles and smart clothing markets 2023–2033: technologies, players, and applications. IDTechEx; 2023.

[6]

Smart Textiles - global strategic business report. Research and Markets; 2025.

[7]

Smart Textile Market: emerging challenges and future market potential. Stellar Market Research; 2024.

[8]

Xin G, Zhu W, Deng Y, Cheng J, Zhang LT, Chung AJ, De S, Lian J. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat Nanotechnol, 2019, 14: 168-175

[9]

Kelly AG, O’Suilleabhain D, Gabbett C, Coleman JN. The electrical conductivity of solution-processed nanosheet networks. Nat Rev Mater, 2022, 7: 217-234

[10]

Uzun S, Seyedin S, Stoltzfus AL, Levitt AS, Alhabeb M, Anayee M, Strobel CJ, Razal JM, Dion G, Gogotsi Y. Knittable and washable multifunctional MXene-coated cellulose yarns. Adv Funct Mater, 2019, 29 1905015

[11]

Bi L, Perry W, JohnWang R, et al.. MXene functionalized Kevlar yarn via automated, continuous dip coating. Adv Funct Mater, 2023, 34 2312434

[12]

Seyedin S, Uzun S, Levitt A, Anasori B, Dion G, Gogotsi Y, Razal JM. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv Funct Mater, 2020, 30 1910504

[13]

Inman A, Hryhorchuk T, Bi L, et al.. Wearable energy storage with MXene textile supercapacitors for real world use. J Mater Chem A, 2023, 11: 3514-3523

[14]

Chao M, He L, Gong M, Li N, Li X, Peng L, Shi F, Zhang L, Wan P. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano, 2021, 15: 9746-9758

[15]

Ding B, Yao L, Tang J, Li C, Zheng X. Screen-printed MXene-based all-solid-state textile supercapacitors. Mater Today Commun, 2024, 38 108170

[16]

Deng C, Zhao S, Su E, Li Y, Wu F. Trilayer MXene fabric for integrated ultrasensitive pressure sensor and wearable heater. Adv Mater Technol, 2021, 6 2100574

[17]

Li Q, Yin R, Zhang D, Liu H, Chen X, Zheng Y, Guo Z, Liu C, Shen C. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J Mater Chem A, 2020, 8: 21131-21141

[18]

Liu L, Chen W, Zhang H, Wang Q, Guan F, Yu Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv Funct Mater, 2019, 29 1905197

[19]

Uzun S, Han M, Strobel CJ, Hantanasirisakul K, Goad A, Dion G, Gogotsi Y. Highly Conductive and Scalable Ti3C2Tx-Coated Fabrics for Efficient Electromagnetic Interference Shielding. Carbon, 2020, 174: 382-389

[20]

Wang X-Y, Liao S-Y, Wan Y-J, Huang H-P, Li X-M, Hu Y-G, Zhu P-L, Sun R, Wong C-P. Near-field and far-field EMI shielding response of lightweight and flexible MXene-decorated polyester textiles. Mater Today Phys, 2022, 23 100644

[21]

Liu L-X, Chen W, Zhang H-B, Ye L, Wang Z, Zhang Y, Min P, Yu Z-Z. Super-tough and environmentally stable aramid nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett, 2022, 14: 111

[22]

Zhang J, Seyedin S, Qin S, et al.. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small, 2019, 15: 1804732

[23]

Liu X, Miao J, Fan Q, Zhang W, Zuo X, Tian M, Zhu S, Zhang X, Qu L. Smart textile based on 3D stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management. ACS Appl Mater Interfaces, 2021, 13: 56607-56619

[24]

Wang L, Zhang M, Yang B, Tan J. Lightweight, robust, conductive composite fibers based on MXene@Aramid nanofibers as sensors for smart fabrics. ACS Appl Mater Interfaces, 2021, 13: 41933-41945

[25]

Zhou T, Yu Y, He B, et al.. Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nat Commun, 2022, 13: 4564

[26]

Levitt A, Seyedin S, Zhang J, Wang X, Razal JM, Dion G, Gogotsi Y. Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns. Small, 2020, 16: 2002158

[27]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AIC2. Adv Mater, 2011, 23: 4248-4253

[28]

Yang Q, Xu Z, Fang B, Huang T, Cai S, Chen H, Liu Y, Gopalsamy K, Gao W, Gao C. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem A, 2017, 5: 22113-22119

[29]

Wang Z, Qin S, Seyedin S, et al.. High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small, 2018, 14: 1802225

[30]

Uzun S, Schelling M, Hantanasirisakul K, Mathis TS, Askeland R, Dion G, Gogotsi Y. Additive-free aqueous MXene inks for thermal inkjet printing on textiles. Small, 2020, 17 2006376

[31]

Bi L, Garg R, Noriega N, et al.. Soft, multifunctional MXene-coated fiber microelectrodes for biointerfacing. ACS Nano, 2024, 18: 23217-23231

[32]

Yan B, Zhou M, Liao X, Wang P, Yu Y, Yuan J, Wang Q. Developing a multifunctional silk fabric with dual-driven heating and rapid photothermal antibacterial abilities using high-yield MXene dispersions. ACS Appl Mater Interfaces, 2021, 13: 43414-43425

[33]

Han M, Zhang D, Singh A, Hryhorchuk T, Eugene Shuck C, Zhang T, Bi L, McBride B, Shenoy VB, Gogotsi Y. Versatility of infrared properties of MXenes. Mater Today, 2023, 64: 31-39

[34]

Zhang J, Wang X, Hang G, Wei Y, Wang H, He S, Liu Z. Recent advances in MXene-based fibers, yarns, and fabrics for wearable energy storage devices applications. ACS Appl Electron Mater, 2023, 5: 4704-4725

[35]

Li H, Du Z. MXene fiber-based wearable textiles in sensing and energy storage applications. Fibers Polym, 2023, 24: 1167-1182

[36]

Levitt A, Zhang J, Dion G, Gogotsi Y, Razal JM. MXene-Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices. Adv Funct Mater, 2020, 30: 2000739

[37]

Khademolqorani S, Banitaba SN, Gupta A, et al.. Application scopes of miniaturized MXene-functionalized electrospun nanofibers-based electrochemical energy devices. Small, 2024, 20: 2309572

[38]

Orts Mercadillo V, Chan KC, Caironi M, Athanassiou A, Kinloch IA, Bissett M, Cataldi P. Electrically conductive 2D material coatings for flexible and stretchable electronics: a comparative review of graphenes and MXenes. Adv Funct Mater, 2022, 32 2204772

[39]

Zhou Y, Yin L, Xiang S, Yu S, Johnson HM, Wang S, Yin J, Zhao J, Luo Y, Chu PK. Unleashing the potential of MXene-based flexible materials for high-performance energy storage devices. Adv Sci, 2024, 11 2304874

[40]

Mohan R, Ali F. The future of energy harvesting: a brief review of MXenes-based triboelectric nanogenerators. Polym Adv Technol, 2023, 34: 3193-3209

[41]

Das P, Marvi PK, Ganguly S, Tang X, Wang B, Srinivasan S, Rajabzadeh AR, Rosenkranz A. MXene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett, 2024, 16 135

[42]

Ge C, Sun B, Huang Y, Alahi MdEE, Ma Q, Wei S, Hui Y, Huang Z, Zeng Q. Recent advances in multi-scale piezoresistive interfaces for MXene-based flexible sensors. Adv Mater Technol, 2024, 9 2301897

[43]

Jin C, Bai Z. MXene-based textile sensors for wearable applications. ACS Sens, 2022, 7: 929-950

[44]

Wang L, Zhang M, Yang B, Tan J, Ding X, Li W. Recent advances in multidimensional (1D, 2D, and 3D) composite sensors derived from MXene: synthesis, structure, application, and perspective. Small Methods, 2021, 5 2100409

[45]

Verma R, Thakur P, Chauhan A, Jasrotia R, Thakur A. A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications. Carbon, 2023, 208: 170-190

[46]

Yan B, Bao X, Gao Y, Zhou M, Yu Y, Xu B, Cui L, Wang Q, Wang P. Antioxidative MXene@GA-decorated textile assisted by metal ion for efficient electromagnetic interference shielding, dual-driven heating, and infrared thermal camouflage. Adv Fiber Mater, 2023, 5: 2080-2098

[47]

Dong X-X, Cao Y-M, Wang C, et al.. MXene-decorated smart textiles with the desired mid-infrared emissivity for passive personal thermal management. ACS Appl Mater Interfaces, 2023, 15: 12032-12040

[48]

Beh B. Key Learnings for the E-textiles Industry. In: IDTechEx. Available from: https://www.idtechex.com/en/webinar/key-learnings-for-the-e-textiles-industry/491. Accessed 26 Aug 2024.

[49]

Yang N, Yin X, Liu H, Yan X, Zhou X, Wang F, Zhang X, Zhao Y, Cheng T. Dual-layer all-textile flexible pressure sensor coupled by silver nanowires with Ti3C2 -MXene for monitoring athletic motion during sports and transmitting information. ACS Appl Mater Interfaces, 2023, 15: 42992-43002

[50]

Fu X, Li L, Chen S, Xu H, Li J, Shulga V, Han W. Knitted Ti3C2Tx MXene based fiber strain sensor for human–computer interaction. J Colloid Interface Sci, 2021, 604: 643-649

[51]

Fang Y, Zou Y, Xu J, Chen G, Zhou Y, Deng W, Zhao X, Roustaei M, Hsiai TK, Chen J. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv Mater, 2021, 33 2104178

[52]

Cheng Y, Wang R, Sun J, Gao L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater, 2015, 27: 7365-7371

[53]

Alexopoulos N, Bartholome C, Poulin P, Marioli-Riga Z. Damage detection of glass fiber reinforced composites using embedded PVA–carbon nanotube (CNT) fibers. Compos Sci Technol, 2010, 70: 1733-1741

[54]

Takamatsu S, Lonjaret T, Ismailova E, Masuda A, Itoh T, Malliaras GG. Wearable keyboard using conducting polymer electrodes on textiles. Adv Mater, 2016, 28: 4485-4488

[55]

Yin B, Wen Y, Hong T, Xie Z, Yuan G, Ji Q, Jia H. Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl Mater Interfaces, 2017, 9: 32054-32064

[56]

Adepu V, Kamath K, Mattela V, Sahatiya P. Development of Ti3C2Tx/NiSe2 nanohybrid-based large-area pressure sensors as a smart bed for unobtrusive sleep monitoring. Adv Mater Interfaces, 2021, 8 2100706

[57]

Pan C-T, Dutt K, Kumar A, Kumar R, Chuang C-H, Lo Y-T, Wen Z-H, Wang C-S, Kuo S-W. PVDF/AgNP/MXene composites-based near-field electrospun fiber with enhanced piezoelectric performance for self-powered wearable sensors. Int J Bioprint, 2022, 9 647

[58]

Hao Y, Zhang Y, Mensah A, Liao S, Lv P, Wei Q. Scalable, ultra-high stretchable and conductive fiber triboelectric nanogenerator for biomechanical sensing. Nano Energy, 2023, 109 108291

[59]

Yuan W, Yang K, Peng H, Li F, Yin F. A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J Mater Chem A, 2018, 6: 18116-18124

[60]

Lee SH, Eom W, Shin H, Ambade RB, Bang JH, Kim HW, Han TH. Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl Mater Interfaces, 2020, 12: 10434-10442

[61]

Zhao J, He C, Wu W, Yang H, Peng L, Wen L, Hu Z, Hou C, Huo D. MXene-MoS2 carbon-fiber-based flexible electrochemical interface for multiple bioanalysis in biofluids. Chem Eng J, 2022, 446 136841

[62]

Shen Y, Chai S, Zhang Q, Zhang M, Mao X, Wei L, Zhou F, Sun R, Liu C. PVF composite conductive nanofibers-based organic electrochemical transistors for lactate detection in human sweat. Chem Eng J, 2023, 475 146008

[63]

Mumtaz F, Roman M, Zhang B, Abbas LG, Dai Y, Ashraf MA, Fiaz MA, Kumar A. MXene (Ti3C2Tx) coated highly-sensitive D-shaped photonic crystal fiber based SPR-biosensor. Photonics Nanostruct, 2022, 52 101090

[64]

Vaishag PV, Ankitha M, Rasheed PA. Carbon cloth yarn modified with amino-functionalized Nb2CTx nanosheets for the electrochemical detection of mycophenolate mofetil. ACS Appl Nano Mater, 2023, 6: 23324-23331

[65]

Rajeev R, Varghese A. High-Performance β-cyclodextrin-Ti 3 C 2 T x MXene-Based Electrochemical Sensor for the Detection of Neurological Disorder Biomarker. J Electrochem Soc, 2024, 171 027504

[66]

Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7: 320-329

[67]

Sobolčiak P, Ali A, Hassan MK, Helal MI, Tanvir A, Popelka A, Al-Maadeed MA, Krupa I, Mahmoud KA. 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS ONE, 2017, 12 e0183705

[68]

Mayerberger EA, Urbanek O, McDaniel RM, Street RM, Barsoum MW, Schauer CL. Preparation and characterization of polymer-Ti3C2Tx (MXene) composite nanofibers produced via electrospinning. J Appl Polym Sci, 2017, 134 45295

[69]

Seyedin S, Yanza ERS, Razal JM. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J Mater Chem A, 2017, 5: 24076-24082

[70]

Zhang J, Seyedin S, Gu Z, Yang W, Wang X, Razal JM. MXene: a potential candidate for yarn supercapacitors. Nanoscale, 2017, 9: 18604-18608

[71]

Hu M, Li Z, Li G, Hu T, Zhang C, Wang X. All-solid-state flexible fiber-based MXene supercapacitors. Adv Mater Technol, 2017, 2: 1700143

[72]

Anasori B, Sarycheva A, Buondonno S, Zhou Z, Yang S, Gogotsi Y. 2D metal carbides (MXenes) in fibers. Mater Today, 2017, 20: 481-482

[73]

Grube A, Shaban MM, Hilger L, Firouzjaei MD, Shamsabadi AA, Demirel Y, Elliott M, Nejati S, Bavarian M. Wearable textile supercapacitors: material advancements and applications. J Energy Storage, 2024, 99 113228

[74]

Nam S, Umrao S, Oh S, Oh I-K. 2D Layered Ti 3 C 2 T x Negative Electrode based Activated Carbon Woven Fabric for Structural Lithium Ion Battery. Compos Res, 2019, 32: 296-300

[75]

Jin Q, Li L, Wang H, Gao H, Zhu C, Zhang X. Dual effects of the carbon fibers/Ti3C2Tx interlayer on retarding shuttle of polysulfides for stable lithium-sulfur batteries. Electrochim Acta, 2019, 312: 149-156

[76]

Chae S, Yi S, Yoon J, et al.. Highly defective Ti3CNTx-MXene-based fiber membrane anode for lithium metal batteries. Energy Storage Mater, 2022, 52: 76-84

[77]

Wu Z, Wang H, Xiong P, et al.. Molecularly thin nitride sheets stabilized by titanium carbide as efficient bifunctional electrocatalysts for fiber-shaped rechargeable zinc-air batteries. Nano Lett, 2020, 20: 2892-2898

[78]

Likitaporn C, Okhawilai M, Kasemsiri P, Qin J, Potiyaraj P, Uyama H. High electrolyte uptake of MXene integrated membrane separators for Zn-ion batteries. Sci Rep, 2022, 12: 19915

[79]

Park JM, Jana M, Baek SH, et al.. MXene ink hosting zinc anode for high performance aqueous zinc metal batteries. J Energy Chem, 2023, 76: 187-194

[80]

Wang Y, Zheng Y, Zhao J, Li Y. Assembling free-standing and aligned tungstate/MXene fiber for flexible lithium and sodium-ion batteries with efficient pseudocapacitive energy storage. Energy Storage Mater, 2020, 33: 82-87

[81]

Huang Z, Wang S, Guo X, et al.. A hierarchical hybrid MXenes interlayer with triple function for room-temperature sodium-sulfur batteries. Adv Mater Technol, 2023, 8 2202147

[82]

Zhu Y, Zhu R, Guan P, et al.. Designing MXene-wrapped AgCl@carbon core shell cathode for robust quasi-solid-state Ag-Zn battery with ultralong cycle life. Energy Storage Mater, 2023, 60 102836

[83]

Yang Q-J, Zhao J, Gao W, Zhong W, Qi Y-R, Han J, Bao S-J, Xu M-W. Reasonable suppression of polysulfides/polyselenides shuttle based on MXene in Na-SeS2 batteries. Rare Met, 2023, 42: 1594-1602

[84]

Jing M, Li X, Yu H, An X, Liu Z, Zhang A, Qin X, Li C, Fang D. Ionic liquid etched and microwave-assisted delaminated MXene as an excellent electrocatalyst for the hysteretic negative reaction of vanadium redox flow batteries. Chem Eng J, 2023, 455 140789

[85]

Jiang C, Li X, Ying Y, Ping J. A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture. Nano Energy, 2020, 74 104863

[86]

Jiang C, Wu C, Li X, Yao Y, Lan L, Zhao F, Ye Z, Ying Y, Ping J. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy, 2019, 59: 268-276

[87]

Iqbal A, Shahzad F, Hantanasirisakul K, Kim M-K, Kwon J, Hong J, Kim H, Kim D, Gogotsi Y, Koo CM. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science, 2020, 369: 446-450

[88]

Han M, Shuck CE, Rakhmanov R, Parchment D, Anasori B, Koo CM, Friedman G, Gogotsi Y. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano, 2020, 14: 5008-5016

[89]

Blachowicz T, Wójcik D, Surma M, Magnuski M, Ehrmann G, Ehrmann A. Textile fabrics as electromagnetic shielding materials—a review of preparation and performance. Fibers, 2023, 11: 29

[90]

Liu L-X, Chen W, Zhang H-B, Zhang Y, Tang P, Li D, Deng Z, Ye L, Yu Z-Z. Tough and electrically conductive Ti3C2Tx MXene–based core–shell fibers for high–performance electromagnetic interference shielding and heating application. Chem Eng J, 2022, 430 133074

[91]

Zhao L, Bi L, Hu J, et al.. Universal salt-assisted assembly of MXene from suspension on polymer substrates. Nat Commun, 2024, 15 10027

[92]

Zheng X, Wang P, Zhang X, Hu Q, Wang Z, Nie W, Zou L, Li C, Han X. Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy. Compos Part A Appl Sci Manuf, 2022, 152 106700

[93]

Zhan L, Chen S, Xin Y, Lv J, Fu H, Gao D, Jiang F, Zhou X, Wang N, Lee PS. Dual-responsive MXene-functionalized wool yarn artificial muscles. Adv Sci, 2024, 11: 2402196

[94]

Bai H, Fan T, Guan H, Su Y, Zhang J, Wang J, Ramakrishna S, Long Y-Z. Multifunctional integrated sandwich-structured evaporator based on nanofibrous membrane for efficient photothermal seawater desalination. Compos Commun, 2022, 31 101104

[95]

Lei Z, Hu B, Zhu P, Wang X, Xu B. A multilayer mesh porous 3D-felt fabric evaporator with concave array structures for high-performance solar desalination and electricity generation. Nano Energy, 2024, 122 109307

[96]

Zhang D, Shah D, Boltasseva A, Gogotsi Y. MXenes for photonics. ACS Photonics, 2022, 9: 1108-1116

[97]

Maleski K, Shuck CE, Fafarman AT, Gogotsi Y. The broad chromatic range of two-dimensional transition metal carbides. Adv Opt Mater, 2021, 9 2001563

[98]

Lan C, Meng J, Pan C, Jia L, Pu X. Hierarchical porous dual-mode thermal management fabrics achieved by regulating solar and body radiations. Mater Horiz, 2024, 11: 1760-1768

[99]

Wang S, Zhao X, Yang Z, Ding R, Tian Y, Wang X, Yu J, Zhang S, Ding B. Direct assembly of aerogel micro-nanofiber/MXene sponges with dual-network structures for all-day personal heating. Adv Funct Mater, 2024, 34 2316657

[100]

Shi M, Shen M, Guo X, Jin X, Cao Y, Yang Y, Wang W, Wang J. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano, 2021, 15: 11396-11405

[101]

Huang Y, Spiece J, Parker T, Lee A, Gogotsi Y, Gehring P. Violation of the Wiedemann-Franz law and ultralow thermal conductivity of Ti3C2Tx MXene. ACS Nano, 2024, 18: 32491-32497

[102]

Lan C, Jia H, Qiu M, Fu S. Ultrathin MXene/polymer coatings with an alternating structure on fabrics for enhanced electromagnetic interference shielding and fire-resistant protective performances. ACS Appl Mater Interfaces, 2021, 13: 38761-38772

[103]

Wang B, Lai X, Li H, Jiang C, Gao J, Zeng X. Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl Mater Interfaces, 2021, 13: 23020-23029

[104]

Cheng W, Zhang Y, Tian W, Liu J, Lu J, Wang B, Xing W, Hu Y. Highly efficient MXene-coated flame retardant cotton fabric for electromagnetic interference shielding. Ind Eng Chem Res, 2020, 59: 14025-14036

[105]

Zhou L, Zheng H, Liu Z, Wang S, Liu Z, Chen F, Zhang H, Kong J, Zhou F, Zhang Q. Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing. ACS Nano, 2021, 15: 06287

[106]

Seidi F, Shamsabadi A, Firouzjaei M, Elliott M, Saeb MR, Huang Y, Li C, Xiao H, Anasori B. MXenes Antibacterial Properties and Applications: A Review and Perspective. Small, 2023, 19: 2206716

[107]

Dong L, Ren M, Wang Y, Qiao J, Wu Y, He J, Wei X, Di J, Li Q. Self-sensing coaxial muscle fibers with bi-lengthwise actuation. Mater Horiz, 2021, 8: 2541-2552

[108]

Wu D, Zhang Y, Yang H, Wei A, Zhang Y, Mensah A, Yin R, Lv P, Feng Q, Wei Q. Scalable functionalized liquid crystal elastomer fiber soft actuators with multi-stimulus responses and photoelectric conversion. Mater Horiz, 2023, 10: 2587-2598

[109]

Luo W, Dai F, Liu Y, Wang X, Li M. Pulse-driven MEMS gas sensor combined with machine learning for selective gas identification. Microsyst Nanoeng, 2025, 11: 1-12

[110]

Luo C, Zhou L, Chiou K, Huang J. Multifunctional graphene hair dye. Chem, 2018, 4: 784-794

[111]

Valurouthu G, Maleski K, Kurra N, Han M, Hantanasirisakul K, Sarycheva A, Gogotsi Y. Tunable electrochromic behavior of titanium-based MXenes. Nanoscale, 2020, 12: 14204-14212

[112]

Han M, Zhang D, Shuck CE, McBride B, Zhang T, Wang R, Shevchuk K, Gogotsi Y. Electrochemically modulated interaction of MXenes with microwaves. Nat Nanotechnol, 2023, 18: 373-379

[113]

Zhang R, Deng H, Valenca R, Jin J, Fu Q, Bilotti E, Peijs T. Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sens Actuators A Phys, 2012, 179: 83-91

[114]

Luo Y, Zhu J, Wu K, Honnet C, Mueller S, Matusik W. MagKnitic: Machine-knitted Passive and Interactive Haptic Textiles with Integrated Binary Sensing. In: Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology. ACM, San Francisco CA USA. 2023; 1.

[115]

Decaens J, Vermeersch O, Lachapelle D, Forcier P. Use case of smart textiles bio-sensors development and integration for the automotive industry. IOP Conf Ser Mater Sci Eng, 2020, 827 012018

[116]

Tao X. Advanced technical textile products, 20191London, Routledge

[117]

Yoon A-Y. MXene: Korean investors’ next target after superconductor craze fizzles. In: KED Global. Available from: https://www.kedglobal.com/korean-stock-market/newsView/ked202308210018. Accessed 16 Feb 2025.

[118]

Xu X, Zhou X, Wang T, et al.. Robust DNA-bridged memristor for textile chips. Angew Chem Int Ed, 2020, 59: 12762-12768

[119]

Chen M, Liu J, Li P, et al.. Fabric computing: concepts, opportunities, and challenges. Innovation (Camb), 2022, 3100340

[120]

Loke G, Khudiyev T, Wang B, et al.. Digital electronics in fibres enable fabric-based machine-learning inference. Nat Commun, 2021, 12 3317

[121]

Uzun S, Berglund MEM, Dealey SW, et al. Techniques for incorporating stretchable conductive textile traces and textile-based sensors into knit structures. 2023. Patent.

[122]

Cherenack K, Van Pieterson L. Smart textiles: challenges and opportunities. J Appl Phys, 2012, 112 091301

[123]

Tang L, Wang H, Ren J, Jiang X. Highly robust soft-rigid connections via mechanical interlocking for assembling ultra-stretchable displays. NPJ Flex Electron, 2024, 8 50

[124]

Inman A, Mohammadlou BS, Shevchuk K, et al.. MXene-enabled textile-based energy grid utilizing wireless charging. Mater Today, 2024, 81: 59-69

[125]

Anim K, Saleh Tajin MA, Amanatides CE, Dion G, Dandekar KR. Conductive Fabric-Based Reconfigurable Intelligent Surface. In: 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI). IEEE; 2022. p. 1484–1485. Denver, CO, USA.

[126]

Tajin MAS, Bshara O, Liu Y, Levitt A, Dion G, Dandekar KR. Efficiency measurement of the flexible on-body antenna at varying levels of stretch in a reverberation chamber. IET Microw Antennas Propag, 2020, 14: 154-158

[127]

Patron D, Mongan W, Kurzweg TP, Fontecchio A, Dion G, Anday EK, Dandekar KR. On the use of knitted antennas and inductively coupled RFID tags for wearable applications. IEEE Trans Biomed Circuits Syst, 2016, 10: 1047-1057

[128]

Lim KRG, Shekhirev M, Wyatt BC, Anasori B, Gogotsi Y, Seh ZW. Fundamentals of MXene synthesis. Nat Synth, 2022, 1: 601-614

[129]

Shuck CE, Sarycheva A, Anayee M, Levitt A, Zhu Y, Uzun S, Balitskiy V, Zahorodna V, Gogotsi O, Gogotsi Y. Scalable synthesis of Ti3C2Tx MXene. Adv Eng Mater, 2020, 22: 1901241

[130]

Xiang M, Shen Z, Zheng J, et al.. Gas-phase synthesis of Ti2CCI2 enables an efficient catalyst for lithium-sulfur batteries. Innovation, 2024, 5100540

[131]

Cook R, Kent A, Fisher T, Braithwaite N. Understanding the adoption of smart textiles: insights from innovation theory and interpretative phenomenological analysis of interactive experiences. Eng Proc, 2024, 52: 23

RIGHTS & PERMISSIONS

The Author(s)

PDF

35

Accesses

0

Citation

Detail

Sections
Recommended

/