Dual-Functional Phase Change Composites Integrating Thermal Buffering and Electromagnetic Wave Absorption via Multi-interfacial Engineering

Yuhao Feng , Guangtong Hai , Guoxu Sun , Keke Chen , Xiyao Wang , Jindi Zhao , Yang Li , Xiao Chen

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) : 1873 -1887.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) :1873 -1887. DOI: 10.1007/s42765-025-00585-y
Research Article
research-article

Dual-Functional Phase Change Composites Integrating Thermal Buffering and Electromagnetic Wave Absorption via Multi-interfacial Engineering

Author information +
History +
PDF

Abstract

The rapid development of miniaturized and high-power electronics urgently demands multifunctional materials that simultaneously mitigate thermal shock and electromagnetic interference (EMI). While phase change materials (PCMs) offer thermal buffering capabilities, their limited thermal conductivity and inability to address EMI restrict applications in integrated electronic systems. Herein, we develop multi-interfacial engineered composite PCMs (PW–MXene/CNFs@MoS2) that synergistically integrate thermal management and electromagnetic wave (EMW) absorption. Through hierarchical assembly of 2D MXene and MoS2 nanosheets on a 3D carbon nanofiber (CNF) network, composite PCMs achieve synergistic dual functionality. The architecture establishes an efficient phonon conductive framework for rapid thermal dissipation, while maintaining remarkable heat storage capacity of 121.8 J/g. Additionally, polarization-enhanced heterointerfaces enable excellent EMW absorption (− 64.1 dB reflection loss across 4.28 GHz bandwidth below 2.1 mm). The composite PCMs also exhibit outstanding cyclic stability, retaining 97% of their phase change enthalpy after 300 thermal cycles, while maintaining superior leakage resistance under combined thermal and mechanical stresses. Practical validation reveals its dual functionality: a 6.4 °C thermal buffer under 1200 W/m2 thermal shock and effective Bluetooth signal shielding. This work provides an innovative solution for the synergistic management of thermal shock and electromagnetic interference issues, showing viable potential for applications in advanced electronic systems.

Graphical Abstract

Keywords

Phase change materials / Thermal management / Electromagnetic wave absorption / Multi-interfacial engineering / Synergistic enhancement

Cite this article

Download citation ▾
Yuhao Feng, Guangtong Hai, Guoxu Sun, Keke Chen, Xiyao Wang, Jindi Zhao, Yang Li, Xiao Chen. Dual-Functional Phase Change Composites Integrating Thermal Buffering and Electromagnetic Wave Absorption via Multi-interfacial Engineering. Advanced Fiber Materials, 2025, 7(6): 1873-1887 DOI:10.1007/s42765-025-00585-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang G, Tang ZD, Gao Y, Liu PP, Li Y, Li A, Chen X. Phase change thermal storage materials for interdisciplinary applications. Chem Rev, 2023, 123: 6953-7024

[2]

Wang CX, Hua LJ, Yan HZ, Li BJ, Tu YD, Wang RZ. A thermal management strategy for electronic devices based on moisture sorption-desorption processes. Joule, 2020, 4: 435-447

[3]

Sadeghi G. Energy storage on demand: thermal energy storage development, materials, design, and integration challenges. Energy Storage Mater, 2022, 46: 192-222

[4]

Cheng JY, Li CB, Xiong YF, Zhang HB, Raza H, Ullah S, Wu JY, Zheng GP, Cao Q, Zhang DQ, Zheng QB, Che RC. Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett, 2022, 14: 80

[5]

Wu TQ, Shen JC, Zou J, Wu P, Liao YT. Semiconductor laser packaging technology:thermal management, optical performance enhancement, and reliability studies. J Opt Photonics Res, 2024

[6]

Li MD, Shen XQ, Chen X, Gan JM, Wang F, Li J, Wang XL, Shen QD. Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration. Nat Commun, 2022, 13: 5849

[7]

Mohapatra PP, Singh HK, Dobbidi P. Advancements in electromagnetic microwave absorbers: ferrites and carbonaceous materials. Adv Colloid Interface Sci, 2025, 337 103381

[8]

Ren JN, Mu ZX, Sellami R, El-Bahy SM, Liang GM, Guo J, El-Bahy ZM, Xie PT, Guo ZH, Hou H. Multifunctions of microwave-absorbing materials and their potential cross-disciplinary applications: a mini-review. Adv Compos Hybrid Mater, 2025, 8: 202

[9]

Chen L, Sun XQ, Cheng K, Topham PD, Xu MM, Jia YF, Dong DH, Wang S, Liu Y, Wang LG, Yu QQ. Temperature-regulating phase change fiber scaffold toward mild photothermal-chemotherapy. Adv Fiber Mater, 2022, 4: 1669-1684

[10]

Wang CC, Shi JL, Zhang LP, Fu SH. Asymmetric janus fibers with bistable thermochromic and efficient solar–thermal properties for personal thermal management. Adv Fiber Mater, 2024, 6: 264-277

[11]

Li Y, Liu PP, Li PC, Feng YH, Gao Y, Diao XM, Chen X, Wang G. Neural network-inspired hybrid aerogel boosting solar thermal storage and microwave absorption. Nano Res Energy, 2024, 3 e9120120

[12]

Chen X, Liu CH, Aftab W. Advanced solid–solid phase change thermal storage material. Nano Res Energy, 2024, 3 e9120103

[13]

Sahoo SK, Das MK, Rath P. Application of TCE-PCM based heat sinks for cooling of electronic components: a review. Renew Sustain Energy Rev, 2016, 59: 550-582

[14]

Ghadim HB, Godin A, Veillere A, Duquesne M, Haillot D. Review of thermal management of electronics and phase change materials. Renew Sustain Energy Rev, 2025, 208 115039

[15]

Zhang XY, Sun KY, Liu HQ, Chen J, Yan XM, Kou Y, Shi Q. Flexible insulating phase change composite film with improved thermal conductivity for wearable thermal management. Nano Energy, 2024, 121 109256

[16]

Wu MQ, Xuan YM, Liu XL, Jing YG, Li TX. Flexible, recyclable, and highly conductive self-healing polymer-based phase change films for thermal management. Adv Funct Mater.2025:2506229. https://doi.org/10.1002/adfm.202506229.

[17]

Wang BL, Li GY, Xu L, Liao JH, Zhang XT. Nanoporous boron nitride aerogel film and its smart composite with phase change materials. ACS Nano, 2020, 14: 16590-16599

[18]

Zhu GY, Zou MM, Luo WX, Huang YF, Chen WJ, Hu XW, Jiang XX, Li QL. A polyurethane solid–solid phase change material for flexible use in thermal management. Chem Eng J, 2024, 488 150930

[19]

Gao Y, Chen X, Jin X, Zhang CJ, Zhang X, Liu XD, Li YH, Li Y, Lin JJ, Gao HY, Wang G. Multifunction integration within magnetic CNT-bridged MXene/CoNi based phase change materials. eScience, 2024, 4: 100292

[20]

Cao Y, Zhao ZZ, Zeng XF, Teng JX, Huang JT, Min YG. High-performance polyimide/polypyrrole-CNTs@PEG composites for integrated thermal management and enhanced electromagnetic wave absorption. Adv Compos Hybrid Mater, 2025, 8: 104

[21]

Ge X, Tay GZ, Hou Y, Zhao YJ, Sugumaran PJ, Thai BQ, Ang CK, Zhai W, Yang Y. Flexible and leakage-proof phase change composite for microwave attenuation and thermal management. Carbon, 2023, 210 118084

[22]

Liu M, Qian RD, Yang Y, Lu XT, Huang L, Zou DQ. Modification of phase change materials for electric-thermal, photo-thermal, and magnetic-thermal conversions: a comprehensive review. Adv Funct Mater, 2024, 34 2400038

[23]

Lin Y, Kang Q, Liu YJ, Zhu YK, Jiang PK, Mai Y-W, Huang XY. Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett, 2023, 15: 31

[24]

Tang ZD, Cheng P, Liu PP, Gao Y, Chen X, Wang G. Tightened 1D/3D carbon heterostructure infiltrating phase change materials for solar–thermoelectric energy harvesting: faster and better. Carbon Energy, 2023, 5 e281

[25]

Liu PP, Li Y, Tang ZD, Lv JJ, Cheng P, Diao XM, Jiang Y, Chen X, Wang G. Integrating thermal energy storage and microwave absorption in phase change material-encapsulated core-sheath MoS2@CNTs. J Energy Chem, 2023, 84: 41-49

[26]

Zhong X, He MK, Zhang CY, Guo YQ, Hu JW, Gu JW. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv Funct Mater, 2024, 34 2313544

[27]

Kim S-H, Lee S-Y, Zhang YL, Park S-J, Gu JW. Carbon-based radar absorbing materials toward stealth technologies. Adv Sci, 2023, 10: 2303104

[28]

Zhang ZY, Zhao YH, Li ZH, Zhang LJ, Liu ZX, Long ZK, Li YJ, Liu Y, Fan RH, Sun K, Zhang ZD. Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Adv Compos Hybrid Mater, 2022, 5: 513-524

[29]

Wang XH, Qin J, Cui J, Huang L, Yuan Y, Li YB. Reduced graphene oxide/carbon nanofiber based composite fabrics with spider web-like structure for microwave absorbing applications. Adv Fiber Mater, 2022, 4: 1164-1176

[30]

Zheng Y, Man ZM, Zhang Y, Wu G, Lu WY, Chen WX. High-performance stretchable supercapacitors based on centrifugal electrospinning-directed hetero-structured graphene–polyaniline hierarchical fabric. Adv Fiber Mater, 2023, 5: 1759-1772

[31]

Meng XW, Yu MJ, Wang CG. The design of ternary nanofibers with core–shell structure for electromagnetic stealthy antenna. Adv Fiber Mater, 2025, 7: 469-480

[32]

Wang JQ, Liu L, Jiao SL, Ma KJ, Lv J, Yang JJ. Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv Funct Mater, 2020, 30: 2002595

[33]

Jiang XW, Wang Q, Song LM, Lu HX, Xu HL, Shao G, Wang HL, Zhang R, Wang CA, Fan BB. Enhancing electromagnetic wave absorption with core-shell structured SiO2@MXene@MoS2 nanospheres. Carbon Energy, 2024, 6 e502

[34]

Qiao J, Zhang X, Xu DM, Kong LX, Lv LF, Yang F, Wang FL, Liu W, Liu JR. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem Eng J, 2020, 380 122591

[35]

Sun C, Shi XL, Zhang YB, Liang JJ, Qu J, Lai C. Ti3C2Tx MXene interface layer driving ultra-stable lithium-iodine batteries with both high iodine content and mass loading. ACS Nano, 2020, 14: 1176-1184

[36]

Wang CX, Liu Y, Jia ZR, Zhao WR, Wu GL. Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett, 2022, 15 13

[37]

Hussain I, Bibi F, Pandiyarajan S, Hanan A, Chuang H-C, Zhang KL. Partially oxidized MXenes for energy storage applications. Prog Mater Sci, 2025, 147 101351

[38]

Li Y, Liu PP, Gao Y, Feng YH, Li PC, Chen X. Scattered co-anchored MoS2 synergistically boosting photothermal capture and storage of phase change materials. J Energy Chem, 2024, 95: 208-215

[39]

Li Y. Co-anchored hollow carbonized kapok fiber encapsulated phase change materials for upgrading photothermal utilization. Small, 2025, 21: 2500479

[40]

Guan XM, Tan SJ, Wang LQ, Zhao Y, Ji GB. Electronic modulation strategy for mass-producible ultrastrong multifunctional biomass-based fiber aerogel devices: interfacial bridging. ACS Nano, 2023, 17: 20525-20536

[41]

Li QY, Liu LY, Zhang Q, Kimura H, Hou CX, Li FS, Xie XB, Sun XQ, Zhang J, Wu NN, Du W, Zhang XY. Heterogeneous interfaces in 3D interconnected networks of flower-like 1T/2H molybdenum disulfide nanosheets and carbon-fibers boosts superior EM wave absorption. J Colloid Interface Sci, 2024, 671: 67-77

[42]

Hu JH, Jiao ZJ, Han XK, Liu J, Ma ML, Jiang JL, Hou YB, Wang XY, Feng C, Ma Y. Facile synthesis of FeNi nanoparticle-loaded carbon nanocomposite fibers for enhanced microwave absorption performance. J Mater Sci Technol, 2024, 175: 141-152

[43]

Meng XW. Ordered solid solution γ′-Fe4N-based absorber synthesized by nitridation engineering and applied for electromagnetic functional devices. Adv Fiber Mater, 2024, 7: 736

[44]

Wang HH, Xiao XY, Zhai SR, Xue C, Zheng GP, Zhang DQ, Che RC, Cheng JY. Spontaneous orientation polarization of anisotropic equivalent dipoles harnessed by entropy engineering for ultra-thin electromagnetic wave absorber. Nano-Micro Lett, 2024, 17 19

[45]

Xu J, Liu LN, Zhang XC, Li B, Zhu CL, Chou SL, Chen YJ. Tailoring electronic properties and polarization relaxation behavior of MoS2 monolayers for electromagnetic energy dissipation and wireless pressure micro-sensor. Chem Eng J, 2021, 425 131700

[46]

Hao B, Zhang Y, Si HX, Jiang ZY, Li CP, Zhang YB, Zhang JW, Gong CH. Multiscale design of dielectric composites for enhanced microwave absorption performance at elevated temperatures. Adv Funct Mater, 2025

[47]

Zou LC, Peng C, Zhuo Y, Liang FL, Liu ZG, Chen JB. Rice straw-inspired tunable multi-hollow channel parallel carbon fibers for enhanced electromagnetic wave absorption. Carbon, 2024, 227 119240

[48]

Huan XH, Li HF, Song YX, Luo JT, Liu C, Xu K, Geng HB, Guo XD, Chen C, Zu L, Jia XL, Zhou JS, Zhang HB, Yang XP. Charge dynamics engineering sparks hetero-interfacial polarization for an ultra-efficient microwave absorber with mechanical robustness. Small, 2024, 20: 2306104

[49]

Zou LC, Wang GH, Liang FL, Zhuo Y, Peng C, Liu ZG, Yuan QP, Chen JB. Evolution of mechanisms in the structural design of low-filler electromagnetic wave absorption materials. Chem Eng J, 2025, 507 160343

[50]

Peng C, Wang GH, Zou LC, Zhuo Y, Liang FL, Pei LS, Yuan QP, Yang K, Chen JB. Multi-scale design of MWCNT/glass fiber/balsa wood composite multilayer stealth structure with wide broadband absorption and excellent mechanical properties. Int J Biol Macromol, 2024, 277 134310

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

/