Wearable Passive Thermal Management Functional Textiles: Recent Advances in Personal Comfort and Energy Harvesting Applications

Wangkai Jiang , Jin-Zhuo Liu , Zhe Wang , Tingting Li , Yan Wang , Honglei Cai , Zhuowen Xie , Ming-Peng Zhuo , Hui Wang , Xiao-Qiao Wang , Jianchen Hu , Ke-Qin Zhang

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) : 1677 -1717.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) :1677 -1717. DOI: 10.1007/s42765-025-00581-2
Review
review-article

Wearable Passive Thermal Management Functional Textiles: Recent Advances in Personal Comfort and Energy Harvesting Applications

Author information +
History +
PDF

Abstract

Smart textiles, enabled by innovations in functional fibers and advanced material design, are revolutionizing thermal management within the human micro-environment. This review comprehensively examines the latest advancements in wearable passive thermal management (PTM) technologies, which synergistically regulate body temperature and harvest wasted thermal energy. By elucidating heat transfer mechanisms—including radiation, conduction, convection, and evaporation—we emphasize the critical role of textiles in modulating these pathways to achieve personal thermal comfort and energy sustainability. Key material strategies, such as radiative-controlled fibers for solar reflection and infrared emission, phase change materials (PCMs) for latent heat storage, and thermally conductive/insulative fibers for dynamic regulation, have been explored. The integration of thermoelectric generators (TEGs) into textiles is highlighted, demonstrating their potential to convert body heat into electrical energy through Seebeck and thermogalvanic effects. Emerging technologies, including Janus fabrics with switchable radiative properties and humidity-responsive fibers, further enhance adaptability across diverse environments. Notably, the incorporation of machine learning frameworks and AI-driven design paradigms has accelerated the development of predictive thermal models and optimized nanostructures, bridging laboratory innovations with industrial scalability. Challenges in durability, comfort, and large-scale manufacturing are critically addressed, underscoring the need for interdisciplinary collaboration. This review underscores the transformative potential of fiber-based PTM systems in reducing the reliance on energy-intensive heating, ventilating, and air conditioning (HVAC) systems, advancing sustainable micro-environment solutions, and powering next-generation wearable electronics. Future perspectives emphasize intelligent material systems, ethical AI integration, and multifunctional textile architectures to realize personalized comfort and global energy sustainability.

Graphical Abstract

Overview of wearable passive thermal management systems

Keywords

Thermal management / Energy harvesting / Smart textiles / Radiative cooling / Phase change materials / Thermoelectric generators / Functional fibers / Artificial intelligence / Textile applications

Cite this article

Download citation ▾
Wangkai Jiang, Jin-Zhuo Liu, Zhe Wang, Tingting Li, Yan Wang, Honglei Cai, Zhuowen Xie, Ming-Peng Zhuo, Hui Wang, Xiao-Qiao Wang, Jianchen Hu, Ke-Qin Zhang. Wearable Passive Thermal Management Functional Textiles: Recent Advances in Personal Comfort and Energy Harvesting Applications. Advanced Fiber Materials, 2025, 7(6): 1677-1717 DOI:10.1007/s42765-025-00581-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hu R, Liu Y, Shin S, Huang S, Ren X, Shu W, Cheng J, Tao G, Xu W, Chen R, Luo X. Emerging materials and strategies for personal thermal management. Adv Energy Mater, 2020, 10 1903921

[2]

Peng Y, Cui Y. Advanced textiles for personal thermal management and energy. Joule, 2020, 4: 724

[3]

Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 2014, 515: 540

[4]

Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L. A radiative cooling structural material. Science, 2019, 364: 760

[5]

Santamouris M. Cooling the buildings–past, present and future. Energy Build, 2016, 128: 617

[6]

Jia Y, Jiang Q, Sun H, Liu P, Hu D, Pei Y, Liu W, Crispin X, Fabiano S, Ma Y. Wearable thermoelectric materials and devices for self-powered electronic systems. Adv Mater, 2021, 33 2102990

[7]

Riemer R, Shapiro A. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J Neuroeng Rehabil, 2011, 8: 1

[8]

Lv J, Chen J, Lee PS. Sustainable wearable energy storage devices self-charged by human-body bioenergy. SusMat, 2021, 1: 285

[9]

Nozariasbmarz A, Collins H, Dsouza K, Polash MH, Hosseini M, Hyland M, Liu J, Malhotra A, Ortiz FM, Mohaddes F, Ramesh VP, Sargolzaeiaval Y, Snouwaert N, Özturk M, Vashaee D. Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems. Appl Energy, 2020, 258 114069

[10]

Li L, Liu WD, Liu Q, Chen ZG. Multifunctional wearable thermoelectrics for personal thermal management. Adv Funct Mater, 2022, 32 2200548

[11]

Wu B, Qi Q, Liu L, Liu Y, Wang J. Wearable aerogels for personal thermal management and smart devices. ACS Nano, 2024, 18: 9798

[12]

Xue T, Zhu C, Feng X, Wali Q, Fan W, Liu T. Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv Fiber Mater, 2022, 4: 1118

[13]

Fei L, Zhang ZY, Tan Y, Ye T, Dong D, Yin Y, Li T, Wang C. Efficient and robust molecular solar thermal fabric for personal thermal management. Adv Mater, 2023, 35 2209768

[14]

Fei L, Yu W, Tan J, Yin Y, Wang C. High solar energy absorption and human body radiation reflection Janus textile for personal thermal management. Adv Fiber Mater, 2023, 5: 955

[15]

Iqbal MI, Lin K, Sun F, Chen S, Pan A, Lee HH, Kan C-W, Lin CSK, Tso CY. Radiative cooling nanofabric for personal thermal management. ACS Appl Mater Interfaces, 2022, 14: 23577

[16]

Zhong S, Yi L, Zhang J, Xu T, Xu L, Zhang X, Zuo T, Cai Y. Self-cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling. Chem Eng J, 2021, 407 127104

[17]

Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M, Cen Q, Tang Y, Zhou X, Huang Z, Wang R, Tunuhe A, Sun X, Xia Z, Tian M, Chen M, Ma X, Yang L, Zhou J, Zhou H, Yang Q, Li X, Ma Y, Tao G. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science, 2021, 373: 692

[18]

Hoyt T, Arens E, Zhang H. Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Build Environ, 2015, 88: 89

[19]

Zheng Z-H, Shi X-L, Ao D-W, Liu W-D, Li M, Kou L-Z, Chen Y-X, Li F, Wei M, Liang G-X, Fan P, Lu G-Q, Chen Z-G. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat Sustain, 2023, 6: 180

[20]

Sun Y, Guo F, Feng Y, Li C, Zou Y, Cheng J, Dong X, Wu H, Zhang Q, Liu W, Liu Z, Cai W, Ren Z, Sui J. Performance boost for bismuth telluride thermoelectric generator via barrier layer based on low Young’s modulus and particle sliding. Nature Commun, 2023, 14: 8085

[21]

Ren W, Sun Y, Zhao D, Aili A, Zhang S, Shi C, Zhang J, Geng H, Zhang J, Zhang L, Xiao J, Yang R. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci Adv, 2021, 7 eabe0586

[22]

Dong J, Feng Y, Lin K, Zhou B, Su F, Liu C. A stretchable electromagnetic interference shielding fabric with dual-mode passive personal thermal management. Adv Funct Mater, 2024, 34 2310774

[23]

Zhu T, Liu L, Huang J, Li S, Lei Y, Cai W, Lai Y, Li H. Multifunctional hydrophobic fabric-based strain sensor for human motion detection and personal thermal management. J Mater Sci Technol, 2023, 138: 108

[24]

He M, Zhao B, Yue X, Chen Y, Qiu F, Zhang T. Infrared radiative modulating textiles for personal thermal management: principle, design and application. Nano Energy, 2023

[25]

Ding D, Wu Q, Li Q, Chen Y, Zhi C, Wei X, Wang J. Novel thermoelectric fabric structure with switched thermal gradient direction toward wearable in‐plane thermoelectric generators. Small. 2023: 2306830.

[26]

Cui Y, He X, Liu W, Zhu S, Zhou M, Wang Q. Highly stretchable, sensitive, and multifunctional thermoelectric fabric for synergistic-sensing systems of human signal monitoring. Adv Fiber Mater, 2024, 6: 170

[27]

Sun T, Zhou B, Zheng Q, Wang L, Jiang W, Snyder GJ. Stretchable fabric generates electric power from woven thermoelectric fibers. Nature Commun, 2020, 11: 572

[28]

Hou Y, Yang Y, Wang Z, Li Z, Zhang X, Bethers B, Xiong R, Guo H, Yu H. Whole fabric-assisted thermoelectric devices for wearable electronics. Adv Sci, 2022, 9 2103574

[29]

Chen W-Y, Shi X-L, Zou J, Chen Z-G. Wearable fiber-based thermoelectrics from materials to applications. Nano Energy, 2021, 81 105684

[30]

Lewis H, Foster A, Mullan B, Cox R, Clark R. Aerodynamics of the human microenvironment. Lancet, 1969, 293: 1273

[31]

Clark R, Toy N. Forced convection around the human head. J Physiol, 1975, 244: 295

[32]

Melikov AK. Human body micro-environment: the benefits of controlling airflow interaction. Build Environ, 2015, 91: 70

[33]

Gao N, Niu J. CFD study on micro-environment around human body and personalized ventilation. Build Environ, 2004, 39: 795

[34]

Fang Y, Chen G, Bick M, Chen J. Smart textiles for personalized thermoregulation. Chem Soc Rev, 2021, 50: 9357

[35]

Hsu P-C, Song AY, Catrysse PB, Liu C, Peng Y, Xie J, Fan S, Cui Y. Radiative human body cooling by nanoporous polyethylene textile. Science, 2016, 353: 1019

[36]

Zhou Z, Wang X, Ma Y, Hu B, Zhou J. Transparent polymer coatings for energy-efficient daytime window cooling. Cell Rep Phys Sci, 2020, 1(11 100231

[37]

Wenger CB. Heat of evaporation of sweat: thermodynamic considerations. J Appl Physiol, 1972, 32: 456

[38]

Li F, Wang S, Wang Z, Jiang K, Zhao X, Shao L, Pan Y. Fouling-proof cooling (FP-Cool) fabric hybrid with enhanced sweat-elimination and heat-dissipation for personal thermal regulation. Adv Funct Mater, 2023, 33 2210769

[39]

Tong JK, Huang X, Boriskina SV, Loomis J, Xu Y, Chen G. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics, 2015, 2: 769

[40]

Cai L, Song AY, Li W, Hsu PC, Lin D, Catrysse PB, Liu Y, Peng Y, Chen J, Wang H, Xu J, Yang A, Fan S, Cui Y. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater, 2018, 30 1802152

[41]

Xie AQ, Zhu L, Liang Y, Mao J, Liu Y, Chen S. Fiber-spinning asymmetric assembly for Janus-structured bifunctional nanofiber films towards all-weather smart textile. Angew Chem, 2022, 134 e202208592

[42]

Lan X, Wang Y, Peng J, Si Y, Ren J, Ding B, Li B. Designing heat transfer pathways for advanced thermoregulatory textiles. Mater Today Phys, 2021, 17 100342

[43]

Fan S, Li W. Photonics and thermodynamics concepts in radiative cooling. Nat Photonics, 2022, 16: 182

[44]

Song J, Zhang W, Sun Z, Pan M, Tian F, Li X, Ye M, Deng X. Durable radiative cooling against environmental aging. Nat Commun, 2022, 13 4805

[45]

Zhu B, Li W, Zhang Q, Li D, Liu X, Wang Y, Xu N, Wu Z, Li J, Li X, Catrysse PB, Xu W, Fan S, Zhu J. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat Nanotechnol, 2021, 16: 1342

[46]

Wang T, Wu Y, Shi L, Hu X, Chen M, Wu L. A structural polymer for highly efficient all-day passive radiative cooling. Nat Commun, 2021, 12 365

[47]

Wang S, Jiang T, Meng Y, Yang R, Tan G, Long Y. Scalable thermochromic smart windows with passive radiative cooling regulation. Science, 2021, 374: 1501

[48]

Steketee J. Spectral emissivity of skin and pericardium. Phys Med Biol, 1973, 18: 686

[49]

Fang Y, Zhao X, Chen G, Tat T, Chen J. Smart polyethylene textiles for radiative and evaporative cooling. Joule, 2021, 5: 752

[50]

Wu X, Li J, Jiang Q, Zhang W, Wang B, Li R, Zhao S, Wang F, Huang Y, Lyu P, Zhao Y, Zhu J, Zhang R. An all-weather radiative human body cooling textile. Nat Sustain, 2023, 6: 1446

[51]

Hsu P-C, Liu X, Liu C, Xie X, Lee HR, Welch AJ, Zhao T, Cui Y. Personal thermal management by metallic nanowire-coated textile. Nano Lett, 2015, 15: 365

[52]

Hsu P-C, Liu C, Song AY, Zhang Z, Peng Y, Xie J, Liu K, Wu C-L, Catrysse PB, Cai L, Zhai S, Majumdar A, Fan S, Cui Y. A dual-mode textile for human body radiative heating and cooling. Sci Adv, 2017, 3 e1700895

[53]

Peng Y, Chen J, Song AY, Catrysse PB, Hsu P-C, Cai L, Liu B, Zhu Y, Zhou G, Wu DS, Lee HR, Fan S, Cui Y. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain, 2018, 1: 105

[54]

Zhang XA, Yu S, Xu B, Li M, Peng Z, Wang Y, Deng S, Wu X, Wu Z, Ouyang M, Wang Y. Dynamic gating of infrared radiation in a textile. Science, 2019, 363: 619

[55]

Luo H, Li Q, Du K, Xu Z, Zhu H, Liu D, Cai L, Ghosh P, Qiu M. An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy, 2019, 65 103998

[56]

Cai L, Peng Y, Xu J, Zhou C, Zhou C, Wu P, Lin D, Fan S, Cui Y. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule, 2019, 3: 1478

[57]

Song Y-N, Ma R-J, Xu L, Huang H-D, Yan D-X, Xu J-Z, Zhong G-J, Lei J, Li Z-M. Wearable polyethylene/polyamide composite fabric for passive human body cooling. ACS Appl Mater Interfaces, 2018, 10: 41637

[58]

Wu J, Hu R, Zeng S, Xi W, Huang S, Deng J, Tao G. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl Mater Interfaces, 2020, 12: 19015

[59]

Huang M-C, Yang M, Guo X-J, Xue C-H, Wang H-D, Ma C-Q, Bai Z, Zhou X, Wang Z, Liu B-Y, Wu Y-G, Qiu C-W, Hou C, Tao G. Scalable multifunctional radiative cooling materials. Prog Mater Sci, 2023, 137 101144

[60]

Liang J, Wu J, Guo J, Li H, Zhou X, Liang S, Qiu C-W, Tao G. Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl Sci Rev, 2023, 10: nwac208

[61]

Chen Z, Zhu L, Raman A, Fan S. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat Commun, 2016, 7 13729

[62]

Rephaeli E, Raman A, Fan S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett, 2013, 13: 1457

[63]

Huang G, Yengannagari AR, Matsumori K, Patel P, Datla A, Trindade K, Amarsanaa E, Zhao T, Köhler U, Busko D, Richards BS. Radiative cooling and indoor light management enabled by a transparent and self-cleaning polymer-based metamaterial. Nature Commun, 2024, 15: 3798

[64]

Jung Y, Ko SH. Radiative cooling technology with artificial intelligence. iScience, 2024, 27 111325

[65]

Huang W, Chen Y, Luo Y, Mandal J, Li W, Chen M, Tsai CC, Shan Z, Yu N, Yang Y. Scalable aqueous processing-based passive daytime radiative cooling coatings. Adv Funct Mater, 2021, 31 2010334

[66]

Lin K, Chen S, Zeng Y, Ho TC, Zhu Y, Wang X, Liu F, Huang B, Chao C-H, Wang Z, Tso CY. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science, 2023, 382: 691

[67]

Zhao X, Li T, Xie H, Liu H, Wang L, Qu Y, Li SC, Liu S, Brozena AH, Yu Z, Srebric J, Hu L. A solution-processed radiative cooling glass. Science, 2023, 382: 684

[68]

Mandal J, Fu Y, Overvig AC, Jia M, Sun K, Shi NN, Zhou H, Xiao X, Yu N, Yang Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 2018, 362: 315

[69]

Cheng N, Miao D, Wang C, Lin Y, Babar AA, Wang X, Wang Z, Yu J, Ding B. Nanosphere-structured hierarchically porous PVDF-HFP fabric for passive daytime radiative cooling via one-step water vapor-induced phase separation. Chem Eng J, 2023, 460 141581

[70]

Wang Y, Zhang X, Liu S, Liu Y, Zhou Q, Zhu T, Miao YE, Willenbacher N, Zhang C, Liu T. Thermal-rectified gradient porous polymeric film for solar-thermal regulatory cooling. Adv Mater, 2024, 36 2400102

[71]

Pyun KR, Jeong S, Yoo MJ, Choi SH, Baik G, Lee M, Song J, Ko SH. Tunable radiative cooling by mechanochromic electrospun micro-nanofiber matrix. Small, 2023, 20 2308572

[72]

Zhang Q, Qi C, Wang X, Zhu B, Li W, Xiao X, Fu H, Hu S, Zhu S, Xu W, Zhu J. Daytime radiative cooling dressings for accelerating wound healing under sunlight. Nat Chem Eng, 2024, 1: 301

[73]

Yao P, Chen Z, Liu T, Liao X, Yang Z, Li J, Jiang Y, Xu N, Li W, Zhu B, Zhu J. Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv Mater, 2022, 34 2208236

[74]

Yang Z, Chen T, Tang X, Xu F, Zhang J. Hierarchical fabric emitter for highly efficient passive radiative heat release. Adv Fiber Mater, 2023, 5: 1367

[75]

Ma C-Q, Xue C-H, Guo X-J, Liang J, Zhang S, Wan L, Wang H-D, Huang M-C, Wu Y-G, Fan W, Hou C. Scalable and sustainable superhydrophobic cooling metacotton. Adv Fiber Mater, 2024, 1: 144

[76]

Cai L, Song AY, Wu P, Hsu P-C, Peng Y, Chen J, Liu C, Catrysse PB, Liu Y, Yang A, Zhou C, Zhou C, Fan S, Cui Y. Warming up human body by nanoporous metallized polyethylene textile. Nature Commun, 2017, 8: 496

[77]

Ho DH, Cheon S, Hong P, Park JH, Suk JW, Kim DH, Han JT, Cho JH. Multifunctional smart textronics with blow-spun nonwoven fabrics. Adv Funct Mater, 2019, 29: 1900025

[78]

Fan X, Ding Y, Liu Y, Liang J, Chen Y. Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano, 2019, 13: 8124

[79]

Park J. Functional fibers, composites and textiles utilizing photothermal and joule heating. Polymers, 2020, 12: 189

[80]

Jin Y, Chang J, Shi Y, Shi L, Hong S, Wang P. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation. J Mater Chem A, 2018, 6: 7942

[81]

Lyu S, He Y, Yao Y, Zhang M, Wang Y. Photothermal clothing for thermally preserving pipeline transportation of crude oil. Adv Funct Mater, 2019, 29 1900703

[82]

Shi M, Shen M, Guo X, Jin X, Cao Y, Yang Y, Wang W, Wang J. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano, 2021, 15: 11396

[83]

Guo Y, Dun C, Xu J, Mu J, Li P, Gu L, Hou C, Hewitt CA, Zhang Q, Li Y, Carroll DL, Wang H. Ultrathin, washable, and large-area graphene papers for personal thermal management. Small, 2017, 13 1702645

[84]

Chang J, Shi L, Zhang M, Li R, Shi Y, Yu X, Pang K, Qu L, Wang P, Yuan J. Tailor-made white photothermal fabrics: a bridge between pragmatism and aesthetic. Adv Mater, 2023, 35 2209215

[85]

Xue S, Huang G, Chen Q, Wang X, Fan J, Shou D. Personal thermal management by radiative cooling and heating. Nano-Micro Lett, 2024, 16 153

[86]

Lan C, Xu F, Pan C, Guo ZH, Pu X. MXene based Janus fabrics with radiative heating towards efficient personal thermal management. Chem Eng J, 2023, 472 144662

[87]

Gao Q, Lauster T, Kopera BA, Retsch M, Agarwal S, Greiner A. Breathable and flexible dual-sided nonwovens with adjustable infrared optical performances for smart textile. Adv Funct Mater, 2022, 32: 2108808

[88]

Niu S, Liu X, Wang C, Mu W, Xu W, Wang Q. Breaking the trade-off between complexity and absorbing performance in metamaterials through intelligent design. Small, 2025

[89]

Ding Z, Li X, Ji Q, Zhang Y, Li H, Zhang H, Pattelli L, Li Y, Xu H, Zhao J. Machine-learning-assisted design of a robust biomimetic radiative cooling metamaterial. ACS Mater Lett, 2024, 6: 2416

[90]

Li K, Li M, Lin C, Liu G, Li Y, Huang B. A Janus textile capable of radiative subambient cooling and warming for multi-scenario personal thermal management. Small, 2023, 19: 2206149

[91]

Yang P, He J, Ju Y, Zhang Q, Wu Y, Xia Z, Chen L, Tang S. Dual-mode integrated Janus films with highly efficient NaH2PO2-enhanced infrared radiative cooling and solar heating for year-round thermal management. Adv Sci, 2023, 10 2206176

[92]

Zhang Q, Lv Y, Wang Y, Yu S, Li C, Ma R, Chen Y. Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat Commun, 2022, 13 4874

[93]

Yu H, Zhang S, Lian Y, Liu M, Wang M, Jiang J, Yang C, Jia S, Wu M, Liao Y, Gou Y, Wang J, Tao G. Electronic textile with passive thermal management for outdoor health monitoring. Adv Fiber Mater, 2024, 6: 1241

[94]

Gu B, Xu Q, Wang H, Pan H, Zhao D. A hierarchically nanofibrous self-cleaning textile for efficient personal thermal management in severe hot and cold environments. ACS Nano, 2023, 17: 18308

[95]

Xiang B, Zhang R, Zeng X, Luo Y, Luo Z. An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv Fiber Mater, 2022, 4: 1058

[96]

Huang MC, Xue CH, Bai Z, Wang HD, Ma CQ, Wu YG, Wan L, Xie L, Lv SQ, Gao RR, Zhang WM, Chen J, Guo XJ. Scalable thermochromic superhydrophobic collagen fiber-based wearable materials for all-weather self-adaptive radiative cooling and solar heating. Chem Eng J, 2024, 496 153938

[97]

Li K, Lin C, Liu G, Wang G, Ma W, Li M, Li Y, Huang B. Stepless IR chromism in Ti3C2Tx MXene tuned by interlayer water molecules. Adv Mater, 2024, 36 2308189

[98]

Lu W, Deng Q, Liu M, Ding B, Xiong Z, Qiu L. Coaxial wet spinning of boron nitride nanosheet-based composite fibers with enhanced thermal conductivity and mechanical strength. Nano-Micro Lett, 2024, 16: 25

[99]

Wu J, Zhang M, Su M, Zhang Y, Liang J, Zeng S, Chen B, Cui L, Hou C, Tao G. Robust and flexible multimaterial aerogel fabric toward outdoor passive heating. Adv Fiber Mater, 2022, 4: 1545

[100]

Liu Z, Lyu J, Fang D, Zhang X. Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano, 2019, 13: 5703

[101]

Wu M, Shao Z, Zhao N, Zhang R, Yuan G, Tian L, Zhang Z, Gao W, Bai H. Biomimetic, knittable aerogel fiber for thermal insulation textile. Science, 2023, 382: 1379

[102]

Ma Z, Zhao D, She C, Yang Y, Yang R. Personal thermal management techniques for thermal comfort and building energy saving. Mater Today Phys, 2021, 20 100465

[103]

Sajjad U, Hamid K, Sultan M, Abbas N, Ali HM, Imran M, Muneeshwaran M, Chang J-Y, Wang C-C. Personal thermal management-a review on strategies, progress, and prospects. Int Commun Heat mass, 2022, 130 105739

[104]

Babapoor A, Karimi G, Golestaneh SI, Mezjin MA. Coaxial electro-spun PEG/PA6 composite fibers: fabrication and characterization. Appl Therm Eng, 2017, 118: 398

[105]

Lu Y, Xiao X, Zhan Y, Huan C, Qi S, Cheng H, Xu G. Core-sheath paraffin-wax-loaded nanofibers by electrospinning for heat storage. ACS Appl Mater Interfaces, 2018, 10: 12759

[106]

Mehrizi AA, Karimi-Maleh H, Naddafi M, Karimi F. Application of bio-based phase change materials for effective heat management. J Energy Storage, 2023, 61 106859

[107]

Li D, Zhuang B, Chen Y, Li B, Landry V, Kaboorani A, Wu Z, Wang XA. Incorporation technology of bio-based phase change materials for building envelope: a review. Energy Build, 2022, 260 111920

[108]

Lu Y, Xiao X, Fu J, Huan C, Qi S, Zhan Y, Zhu Y, Xu G. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem Eng J, 2019, 355: 532

[109]

Li G, Hong G, Dong D, Song W, Zhang X. Multiresponsive graphene-aerogel-directed phase-change smart fibers. Adv Mater, 2018, 30 1801754

[110]

He Y, Li W, Han N, Wang J, Zhang X. Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Appl Energy, 2019, 247: 615

[111]

Ong PJ, Leow Y, Soo XYD, Chua MH, Ni X, Suwardi A, Tan CKI, Zheng R, Wei F, Xu J, Loh XJ, Kai D, Zhu Q. Valorization of spent coffee grounds: a sustainable resource for bio-based phase change materials for thermal energy storage. Waste Manag, 2023, 157: 339

[112]

Pierre AC, Pajonk GM. Chemistry of aerogels and their applications. Chem Rev, 2002, 102: 4243

[113]

Zare M, Mikkonen KS. Phase change materials for life science applications. Adv Funct Mater, 2023, 33 2213455

[114]

Cotrufo M, Sulejman SB, Wesemann L, Rahman MA, Bhaskaran M, Roberts A, Alù A. Reconfigurable image processing metasurfaces with phase-change materials. Nature Commun, 2024, 15: 4483

[115]

Simonsen G, Ravotti R, O'Neill P, Stamatiou A. Biobased phase change materials in energy storage and thermal management technologies. Renew Sustain Energy Rev, 2023, 184 113546

[116]

Zhu G, Zou M, Luo W, Huang Y, Chen W, Hu X, Jiang X, Li Q. A polyurethane solid–solid phase change material for flexible use in thermal management. Chem Eng J, 2024, 488 150930

[117]

Dai B, Li K, Shi L, Wan X, Liu X, Zhang F, Jiang L, Wang S. Bioinspired Janus textile with conical micropores for human body moisture and thermal management. Adv Mater, 2019, 31 1904113

[118]

Neves S, Campos J, Mayor T. Effects of clothing and fibres properties on the heat and mass transport, for different body heat/sweat releases. Appl Therm Eng, 2017, 117: 109

[119]

Yang HC, Xie Y, Hou J, Cheetham AK, Chen V, Darling SB. Janus membranes: creating asymmetry for energy efficiency. Adv Mater, 2018, 30 1801495

[120]

Zhang Y, Fu J, Ding Y, Babar AA, Song X, Chen F, Yu X, Zheng Z. Thermal and moisture managing e-textiles enabled by Janus hierarchical gradient honeycombs. Adv Mater, 2024, 36 2311633

[121]

Wang X, Huang Z, Miao D, Zhao J, Yu J, Ding B. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics. ACS Nano, 2018, 13: 1060

[122]

Lao L, Shou D, Wu Y, Fan J. “Skin-like” fabric for personal moisture management. Sci Adv, 2020, 6 eaaz0013

[123]

Peng Y, Li W, Liu B, Jin W, Schaadt J, Tang J, Zhou G, Wang G, Zhou J, Zhang C, Zhu Y, Huang W, Wu T, Goodson KE, Dames C, Prasher R, Fan S, Cui Y. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat Commun, 2021, 12 6122

[124]

Guo Z, Sun C, Wang J, Cai Z, Ge F. High-performance laminated fabric with enhanced photothermal conversion and joule heating effect for personal thermal management. ACS Appl Mater Interfaces, 2021, 13: 8851

[125]

Tang L, Lyu B, Gao D, Jia Z, Ma J. A wearable textile with superb thermal functionalities and durability towards personal thermal management. Chem Eng J, 2023, 465 142829

[126]

Bao Y, Lyu J, Liu Z, Ding Y, Zhang X. Bending stiffness-directed fabricating of kevlar aerogel-confined organic phase-change fibers. ACS Nano, 2021, 15: 15180

[127]

Wang G, Liu L, Dou S, Hu X, Ge S, Li M, Zhang X, Wang J. Flexible phase-change films with exceptional water and temperature resistance for smart personal thermal protection. ACS Appl Mater Interfaces, 2024, 16: 70149

[128]

Liu H, Zhou F, Shi X, Sun K, Kou Y, Das P, Li Y, Zhang X, Mateti S, Chen Y, Wu Z-S, Shi Q. A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett, 2023, 15: 29

[129]

Lei L, Shi S, Wang D, Meng S, Dai J-G, Fu S, Hu J. Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives. ACS Nano, 2023, 17: 1803

[130]

Peng Y, Dong J, Gu Y, Zhang Y, Long J, Park S, Liu T, Huang Y. Smart temperature-adaptive thermal regulation textiles integrating passive radiative cooling and reversible heat storage. Nano Energy, 2024, 131 110311

[131]

Cheng H, Le Q, Liu Z, Qian Q, Zhao Y, Ouyang J. Ionic thermoelectrics: principles, materials and applications. J Mater Chem C, 2022, 10: 433

[132]

Gayner C, Kar KK. Recent advances in thermoelectric materials. Prog Mater Sci, 2016, 83: 330

[133]

Scaccabarozzi AD, Basu A, Aniés F, Liu J, Zapata-Arteaga O, Warren R, Firdaus Y, Nugraha MI, Lin Y, Campoy-Quiles M, Koch N, Müller C, Tsetseris L, Heeney M, Anthopoulos TD. Doping approaches for organic semiconductors. Chem Rev, 2021, 122: 4420

[134]

Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater, 2008, 7: 105

[135]

Yang X, Wang C, Lu R, Shen Y, Zhao H, Li J, Li R, Zhang L, Chen H, Zhang T, Zheng X. Progress in measurement of thermoelectric properties of micro/nano thermoelectric materials: a critical review. Nano Energy, 2022, 101 107553

[136]

Zebarjadi M, Esfarjani K, Dresselhaus M, Ren Z, Chen G. Perspectives on thermoelectrics: from fundamentals to device applications. Energ Environ Sci, 2012, 5: 5147

[137]

Zheng X, Hu Q, Zhou X, Nie W, Li C, Yuan N. Graphene-based fibers for the energy devices application: a comprehensive review. Mater Des, 2021, 201 109476

[138]

Jiang B, Wang W, Liu S, Wang Y, Wang C, Chen Y, Xie L, Huang M, He J. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science, 2022, 377: 208

[139]

Hasan MN, Wahid H, Nayan N, Mohamed Ali MS. Inorganic thermoelectric materials: a review. Int J Energy Res, 2020, 44: 6170

[140]

Xuan Y, Liu X, Desbief S, Leclère P, Fahlman M, Lazzaroni R, Berggren M, Cornil J, Emin D, Crispin X. Thermoelectric properties of conducting polymers: the case of poly (3-hexylthiophene). Phys Rev B, 2010, 82 115454

[141]

Zhao D, Tan G. A review of thermoelectric cooling: materials, modeling and applications. Appl Therm Eng, 2014, 66: 15

[142]

Li X, Cai K, Gao M, Du Y, Shen S. Recent advances in flexible thermoelectric films and devices. Nano Energy, 2021, 89 106309

[143]

Jang D, Park KT, Lee S-S, Kim H. Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity. Nano Energy, 2022, 97 107143

[144]

Du Y, Cai K, Chen S, Wang H, Shen SZ, Donelson R, Lin T. Thermoelectric fabrics: toward power generating clothing. Sci Rep, 2015, 5 6411

[145]

Sun M, Tang G, Wang H, Zhang T, Zhang P, Han B, Yang M, Zhang H, Chen Y, Chen J, Zhu Q, Li J, Chen D, Gan J, Qian Q, Yang Z. Enhanced thermoelectric properties of Bi2Te3-based micro–nano fibers via thermal drawing and interfacial engineering. Adv Mater, 2022, 34 2202942

[146]

Park KT, Lee T, Ko Y, Cho YS, Park CR, Kim H. High-performance thermoelectric fabric based on a stitched carbon nanotube fiber. ACS Appl Mater Interfaces, 2021, 13: 6257

[147]

Massetti M, Jiao F, Ferguson AJ, Zhao D, Wijeratne K, Würger A, Blackburn JL, Crispin X, Fabiano S. Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem Rev, 2021, 121: 12465

[148]

Jiang W, Li T, Hussain B, Zhou S, Wang Z, Peng Y, Hu J, Zhang K-Q. Facile fabrication of cotton-based thermoelectric yarns for the construction of textile generator with high performance in human heat harvesting. Adv Fiber Mater, 2023, 5: 1725

[149]

Ding T, Chan KH, Zhou Y, Wang X-Q, Cheng Y, Li T, Ho GW. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat Commun, 2020, 11: 6006

[150]

Huang D, Kim H, Zou G, Xu X, Zhu Y, Ahmad K, Almutairi ZA, Alshareef HN. All-MXene thermoelectric nanogenerator. Mater Today Energy, 2022, 29 101129

[151]

Huang Y, Zhao X, Ke J-L, Zha X-J, Yang J, Yang W. Engineering nanoscale solid networks of ionogel for enhanced thermoelectric power output and excellent mechanical properties. Chem Eng J, 2023, 456 141156

[152]

Ding T, Zhou Y, Wang XQ, Zhang C, Li T, Cheng Y, Lu W, He J, Ho GW. All-soft and stretchable thermogalvanic gel fabric for antideformity body heat harvesting wearable. Adv Energy Mater, 2021, 11 2102219

[153]

Li M, Xu H, Luo M, Qing X, Wang W, Zhong W, Liu Q, Wang Y, Yang L, Zhu X, Wang D. Wearable ionogel fiber-based ionic thermoelectric device for low-grade human body heat harvesting. Chem Eng J, 2024, 485 149784

[154]

Fang Y, Cheng H, He H, Wang S, Li J, Yue S, Zhang L, Du Z, Ouyang J. Stretchable and transparent ionogels with high thermoelectric properties. Adv Funct Mater, 2020, 30 2004699

[155]

Zhang C, Shi XL, Liu Q, Chen ZG. Hydrogel-based functional materials for thermoelectric applications: progress and perspectives. Adv Funct Mater, 2024, 34 2410127

[156]

Dai Y, Wang H, Qi K, Ma X, Wang M, Ma Z, Wang Z, Yang Y, Ramakrishna S, Ou K. Electrode-dependent thermoelectric effect in ionic hydrogel fiber for self-powered sensing and low-grade heat harvesting. Chem Eng J, 2024, 497 154970

[157]

Cao T, Shi X-L, Chen Z-G. Advances in the design and assembly of flexible thermoelectric device. Prog Mater Sci, 2023, 131 101003

[158]

Xu S, Hong M, Shi X, Li M, Sun Q, Chen Q, Dargusch M, Zou J, Chen Z-G. Computation-guided design of high-performance flexible thermoelectric modules for sunlight-to-electricity conversion. Energy Environ Sci, 2020, 13: 3480

[159]

Zhuo S, Jiang W, Zhao YD, Liu JZ, Zhao X, Ye J, Zheng M, Wang ZS, Zhou XQ, Wang XQ, Shi YL, Chen W, Zhang KQ, Liao LS, Zhuo MP. Large-area nanofiber membrane of NIR photothermal Cs0.32WO3 for flexible and all-weather solar thermoelectric generation. Chem Eng J, 2024, 479 147571

[160]

Zhao YD, Jiang W, Zhuo S, Wu B, Luo P, Chen W, Zheng M, Hu J, Zhang KQ, Wang ZS, Liao LS, Zhuo MP. Stretchable photothermal membrane of NIR-II charge-transfer cocrystal for wearable solar thermoelectric power generation. Sci Adv, 2023, 9 eadh8917

[161]

Wu B, Wei W, Guo Y, Yip WH, Tay BK, Hou C, Zhang Q, Li Y, Wang H. Stretchable thermoelectric generators with enhanced output by infrared reflection for wearable application. Chem Eng J, 2023, 453 139749

[162]

Zhang S, Liu Z, Zhang W, Zhao B, Wu Z, Mu E, Lin H, Zou K, Zhang Y, Zhang XJ, Hu Z. Multi-bioinspired flexible thermal emitters for all-day radiative cooling and wearable self-powered thermoelectric generation. Nano Energy, 2024, 123 109393

[163]

Cai C, Wang Y, Wu X, Cai W, Wei Z, Fu Y. An engineered superdurable cellulosic radiative cooling–power generation wearable metafabric. Chem Eng J, 2024, 493 152599

[164]

Jiang W, Liu J-Z, Wang Z, Wang H, Liu X, Wang L, Wang X-Q, Zhuo M-P, Hu J, Zhang K-Q. Scalable self-cooling textile enabled by hierarchical nanofiber structures with thermoelectric properties. Device, 2025, 3 100564

[165]

Liao M, Banerjee D, Hallberg T, Åkerlind C, Alam MM, Zhang Q, Kariis H, Zhao D, Jonsson MP. Cellulose-based radiative cooling and solar heating powers ionic thermoelectrics. Adv Sci, 2023, 10 2206510

[166]

Han WB, Heo SY, Kim D, Yang SM, Ko GJ, Lee GJ, Kim DJ, Rajaram K, Lee JH, Shin JW, Jang TM, Han S, Kang H, Kim JH, Kim DH, Kim SH, Song YM, Hwang SW. Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Sci Adv, 2023, 9: 5883

[167]

Liu J-Z, Jiang W, Zhuo S, Rong Y, Li Y-Y, Lu H, Hu J, Wang X-Q, Chen W, Liao L-S, Zhuo M-P, Zhang K-Q. Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation. Sci Adv, 2025, 11 eadr2158

[168]

Liu Y, Wang X, Hou S, Wu Z, Wang J, Mao J, Zhang Q, Liu Z, Cao F. Scalable-produced 3D elastic thermoelectric network for body heat harvesting. Nat Commun, 2023, 14: 3058

[169]

He H, Qin Y, Zhu Z, Jiang Q, Ouyang S, Wan Y, Qu X, Xu J, Yu Z. Temperature-arousing self-powered fire warning e-textile based on p–n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett, 2023, 15: 226

[170]

Han Y, Simonsen LE, Malakooti MH. Printing liquid metal elastomer composites for high-performance stretchable thermoelectric generators. Adv Energy Mater, 2022, 12 2201413

[171]

Jing Y, Luo J, Han X, Yang J, Liu Q, Zheng Y, Chen X, Huang F, Chen J, Zhuang Q, Shen Y, Chen H, Zhao H, Snyder GJ, Li G, Zhang T, Zhang K. Scalable manufacturing of a durable, tailorable, and recyclable multifunctional woven thermoelectric textile system. Energy Environ Sci, 2023, 16: 4334

Funding

National Natural Science Foundation of China(51873134)

Natural Science Foundation of Jiangsu Province of China(BK20211317)

Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions(23KJA430014)

China Postdoctoral Science Foundation(2022M712302)

Key Laboratory of Jiangsu Province for Silk Engineering

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

AI Summary AI Mindmap
PDF

238

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/