Bienzyme-Engineered Fibrous Membranes: A Mitochondrial-Targeted Strategy to Reverse Bone Loss in Osteoporotic Models

Qing Zhao , Yuping Li , Jinzheng Zhang , Xiaoyu Lei , Jiajing Tang , Jieqiong Chen , Jidong Li , Weihua Guo , Yi Zuo , Yubao Li

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) : 1803 -1829.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) :1803 -1829. DOI: 10.1007/s42765-025-00580-3
Research Article
research-article

Bienzyme-Engineered Fibrous Membranes: A Mitochondrial-Targeted Strategy to Reverse Bone Loss in Osteoporotic Models

Author information +
History +
PDF

Abstract

The rejuvenation of bone tissue remains a formidable challenge for osteoporosis (OP) patients who suffer severe bone degeneration or structural deterioration. To reverse the bone loss associated with OP, a dual-enzyme cascade system (PCF@EA) was engineered as a biomimetic engine to regulate bone metabolism imbalance. The bienzyme-driven system was constructed by integrating functionalized polymeric composite fibers with two mineralization-promoting hydrolases: recombinant human ectonucleotide pyrophosphatase/phosphodiesterase 1 (rhENPP1) and recombinant human alkaline phosphatase (rhALP). The bienzyme-driven engine efficaciously navigates mitochondria-activated mineralization through an autophagic process, thereby promoting osteogenic differentiation, increasing intracellular inorganic phosphate (Pi), and facilitating calcium influx. Concurrently, metabolic regulation mediated by the bienzyme-driven engine involves the PI3K–Akt pathway, tricarboxylic acid (TCA) cycle and glycerophosphate metabolism, significantly down-regulating the mineralization inhibitor pyrophosphate (PPi) while accelerating the formation of phosphate-related metabolites. Moreover, the enzyme-loaded substrates inhibited bone resorption by reducing expression of osteoclast activity markers, including Trap and Cath-K. This bienzymatic cascade strategy has demonstrated efficacy in restoring bone homeostasis in osteoporotic rats, significantly improving defect maturation and catalyzing the recovery of bone mineral density from severe loss back to baseline levels. The unique features of the bienzyme-driven engine provide a promising approach for the therapeutic treatment of degenerative skeletal diseases.

Keywords

Bienzyme-driven engine / Functionalized fibers / Mitophagy-activated mineralization / Osteoporosis / Maintaining bone homeostasis

Cite this article

Download citation ▾
Qing Zhao, Yuping Li, Jinzheng Zhang, Xiaoyu Lei, Jiajing Tang, Jieqiong Chen, Jidong Li, Weihua Guo, Yi Zuo, Yubao Li. Bienzyme-Engineered Fibrous Membranes: A Mitochondrial-Targeted Strategy to Reverse Bone Loss in Osteoporotic Models. Advanced Fiber Materials, 2025, 7(6): 1803-1829 DOI:10.1007/s42765-025-00580-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong XM, Wang YT, Steininger HM, Hoover MY, Koepke LS, Murphy MP, Sokol J, Seo EY, Tevlin R, Lopez M, Brewer RE, Mascharak S, Lu L, Ajanaku O, Conley SD, Seita J, Morri M, Neff NF, Sahoo D, Yang F, Weissman IL, Longaker MT, Chan CKF. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature. 2021;597:256.

[2]

Acevedo C, Stadelmann VA, Pioletti DP, Alliston T, Ritchie RO. Fatigue as the missing link between bone fragility and fracture. Nat Biomed Eng, 2018, 2: 62-71

[3]

Choi IA, Umemoto A, Mizuno M, Kyung-Hyun PM. Bone metabolism–an underappreciated player. NPJ Metab Health Dis, 2024, 2: 12

[4]

Cui JJ, Yu B, Li DJ, Fu ZY, Yang XY, Jiang LY, Wang XD, Lin KL. Remodeling electrophysiological microenvironment for promoting bone defect repair via electret hybrid electrospun fibrous mat. Adv Fiber Mater, 2024

[5]

Ferretti JL, Cointry GR, Capozza RF, Frost HM. Bone mass, bone strength, muscle–bone interactions, osteopenias and osteoporoses. Mech Ageing Dev, 2003, 124: 269-279

[6]

Hao ZW, Chen TH, Wang Y, Feng QY, Chen JY, Li HK, Wang JW, Wang ZP, Zhang ZY, Chen RX, Shi G, Zou ZW, Cai L, Zhu TH, Li JF. Self-assembling peptide nanofibers anchored parathyroid hormone derivative for bone tissue engineering. Adv Fiber Mater, 2024, 6: 583-606

[7]

Xiao LF, Liu HF, Wu SJ, Huang HY, Xie YL, Wei RX, Lei J, Lei YF, Xue LJ, Yan FF, Geng Z, Cai L. Fishnet-inspired 3D scaffold fabricated from mesh-like electrospun membranes promoted osteoporotic bone regeneration. Adv Fiber Mater, 2025, 7: 72-92

[8]

Martin TJ, Mundy GR. Can osteoclasts be excluded?. Nature, 2007, 445: 19

[9]

Dudley HR, Spiro D. The fine structure of bone cells. J Cell Biol, 1961, 11: 627-649

[10]

Chen RJ, Wang YF, Yu CH, Zhang XP, Wang YW, Yu TB, Wu T. Bioactive glass-reinforced hybrid microfibrous spheres promote bone defect repair via stem cell delivery. Adv Fiber Mater, 2025, 7: 240-253

[11]

Tang CZ, Wei Y, Gu L, Zhang QH, Li M, Yuan GH, He Y, Huang L, Liu Y, Zhang YF. Biomineral precursor formation is initiated by transporting calcium and phosphorus clusters from the endoplasmic reticulum to mitochondria. Adv Sci, 2020, 7 1902536

[12]

Golub EE, Boesze-Battaglia K. The role of alkaline phosphatase in mineralization. Curr Opin Orthop, 2007, 18: 444-448

[13]

Motyl KJ, Guntur AR, Carvalho AL, Rosen C. Energy metabolism of bone. Toxicol Pathol, 2017, 45: 887-893

[14]

Wang Q, Gao Z, Guo K, Lu JW, Wang F, Huang YF, Wu DS. ENPP1 deletion causes mouse osteoporosis via the MKK3/p38 MAPK/PCNA signaling pathway. J Orthop Surg Res, 2022, 17: 455

[15]

Yu YT, Rong KW, Yao DQ, Zhang Q, Cao XK, Rao B, Xia Y, Lu Y, Shen YF, Yao Y, Xu HT, Ma PX, Cao Y, Qin A. The structural pathology for hypophosphatasia caused by malfunctional tissue non-specific alkaline phosphatase. Nat Commun, 2023, 14: 4048

[16]

Liu WJ, Zhang LQ, Xuan K, Hu CH, Liu SY, Liao L, Li B, Jin F, Shi ST, Jin Y. Alpl prevents bone ageing sensitivity by specifically regulating senescence and differentiation in mesenchymal stem cells. Bone Res, 2018, 6: 27

[17]

Firouzi N, Khoshfetrat AB, Kazemi D. Enzymatically gellable gelatin improves nano-hydroxyapatite-alginate microcapsule characteristics for modular bone tissue formation. J Biomed Mater Res A, 2020, 108: 340-350

[18]

Zhang YJ, Chen H, Zhang TT, Zan Y, Ni TY, Cao Y, Wang JE, Liu M, Pei RJ. Injectable hydrogels from enzyme-catalyzed crosslinking as BMSCs-laden scaffold for bone repair and regeneration. Mater Sci Eng C Mater Biol Appl, 2019, 96: 841-849

[19]

Zhao Q, Chen JQ, Tang JJ, Lei XY, Zhang JZ, Zhang YL, Li JD, Zuo Y, Li YB. Self-activating phosphorus-rich substrate import enzyme catalytic domains for bone regeneration. Adv Funct Mater, 2024, 34 2316428

[20]

Wang JH, Jiang YL, Zhu C, Liu Z, Qi L, Ding H, Wang J, Huang Y, Li YB, Song YM. Mitochondria-engine with self-regulation to restore degenerated intervertebral disc cells via bioenergetic robust hydrogel design. Bioact Mater, 2024, 43: 340-341

[21]

Sui BY, Ding TT, Wan XY, Chen YX, Zhang XD, Cui YB, Pan J, Li LL, Liu X. Piezoelectric stimulation enhances bone regeneration in alveolar bone defects through metabolic reprogramming of macrophages. Exploration, 2024, 4 20230149

[22]

Xie E, Zhang X, Zhou Y, Yang Y, Lin YQ, Niu YF, Wei J, Li DJ. A polyphenol–metal network of propyl gallate gallium/hafnium oxide on polyimide fibers for facilitating ligament–bone healing. Adv Fiber Mater, 2025, 7: 296-314

[23]

Nitschke Y, Yan Y, Buers I, Kintziger K, Askew K, Rutsch F. ENPP1-Fc prevents neointima formation in generalized arterial calcification of infancy through the generation of AMP. Exp Mol Med, 2018, 50: 1-12

[24]

Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D, Van Sickle BJ, Simmons JH, Edgar TS, Bauer ML, Hamdan MA, Bishop N, Lutz RE, McGinn M, Craig S, Moore JN, Taylor JW, Cleveland RH, Cranley WR, Lim R, Thacher TD, Mayhew JE, Downs M, Millán JL, Skrinar AM, Crine P, Landy H. Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med, 2012, 366: 904-913

[25]

Ullah S, Pelletier J, Sévigny J, Iqbal J. Synthesis and biological evaluation of arylamide sulphonate derivatives as ectonucleotide pyrophosphatase/phosphodiesterase-1 and-3 inhibitors. ACS Omega, 2022, 7: 26905-26918

[26]

Parente JE, Naso LG, Jori K, Franca CA, Ferreira AMD, Williams PAM, Ferrer EG. In vitro experiments and infrared spectroscopy analysis of acid and alkaline phosphatase inhibition by vanadium complexes. New J Chem, 2019, 43: 17603-17619

[27]

Biro GP, Oxygen and ATP: the energy economy of the cell, blood substitutes and oxygen biotherapeutics, Springer.2022, pp. 21–32.

[28]

Pei DD, Sun JL, Zhu CH, Tian FC, Jiao K, Anderson MR, Yiu C, Huang C, Jin CX, Bergeron BE, Chen JH, Tay FR, Niu LN. Contribution of mitophagy to cell-mediated mineralization: revisiting a 50-year-old conundrum. Adv Sci, 2018, 5: 1800873

[29]

Yan X, Zhang Q, Ma XY, Zhong YW, Tang HN, Mai S. The mechanism of biomineralization: progress in mineralization from intracellular generation to extracellular deposition. Jpn Dent Sci Rev, 2023, 59: 181-190

[30]

Bonjour JP. Calcium and phosphate: a duet of ions playing for bone health. J Am Coll Nutr, 2011, 30: 438S-448S

[31]

Endo M. Calcium-induced calcium release in skeletal muscle. Physiol Rev, 2009, 89: 1153-1176

[32]

Jafri M, Keizer J. On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophys J, 1995, 69: 2139-2153

[33]

Nollet M, Santucci-Darmanin S, Breuil V, Al-Sahlanee R, Cros C, Topi M, Momier D, Samson M, Pagnotta S, Cailleteau L, Battaglia S, Farlay D, Dacquin R, Barois N, Jurdic P, Boivin G, Heymann D, Lafont F, Lu SS, Dempster DW, Carle GF, Pierrefite-Carle V. Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy, 2014, 10: 1965-1977

[34]

Pujari-Palmer M, Pujari-Palmer S, Lu X, Lind T, Melhus H, Engstrand T, Karlsson-Ott M, Engqvist H. Pyrophosphate stimulates differentiation, matrix gene expression and alkaline phosphatase activity in osteoblasts. PLoS ONE, 2016, 11 e0163530

[35]

Gao MM, Su QN, Liang TZ, Ma JX, Stoddart MJ, Richards RG, Zhou ZY, Zou XN. Transcriptional activation of ENPP1 by osterix in osteoblasts and osteocytes. Eur Cells Mater, 2018, 36: 1-14

[36]

Shapiro IM, Risbud MV, Landis WJ. Toward understanding the cellular control of vertebrate mineralization: the potential role of mitochondria. Bone, 2024, 185 117112

[37]

Zhang Y, Cao XY, Li PF, Fan YN, Zhang LL, Li WY, Liu YW. PSMC6 promotes osteoblast apoptosis through inhibiting PI3K/AKT signaling pathway activation in ovariectomy-induced osteoporosis mouse model. J Cell Physiol, 2020, 235: 5511-5524

[38]

Tsartsalis AN, Lambrou GI, Tsartsalis D, Savvidis C, Karantza M, Terpos E, Kanaka-Gantenbein C, Chrousos GP, Kattamis A. The role of biphosphonates in the management of thalassemia-induced osteoporosis: a systematic review and meta-analysis. Hormones, 2018, 17: 153-166

[39]

Khan M, Jose A, Sharma S. Physiology, Parathyroid hormone. in: statpearls. treasure island (FL): Stat Pearls Publishing; 2022.

[40]

Norman AW, Roth J, Orci L. The vitamin D endocrine system: steroid metabolism, hormone receptors, and biological response (calcium binding proteins). Endocr Rev, 1982, 3: 331-366

[41]

Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem, 1996, 271: 12511-12516

[42]

Ghifari AS, Saha S, Murcha MW. The biogenesis and regulation of the plant oxidative phosphorylation system. Plant Physiol, 2023, 192: 728-747

[43]

Morse PT, Wan JM, Pham L, Vaishnav A, Bell J, Pavelich L, Malek MH, Sanderson TH, Edwards BFP, Hüttemann M. Phosphorylations and acetylations of cytochrome c control mitochondrial respiration, mitochondrial membrane potential, energy, ROS, and apoptosis. Cells, 2024, 13: 493

[44]

Martín JCH, Ansa BS, Alvarez-Rivera G, Domínguez-Zorita S, Rodríguez-Pombo P, Pérez B, Calvo E, Paradela A, Miguez DG, Cifuentes A, Cuezva JM, Formentini L. An ETFDH-driven metabolon supports OXPHOS efficiency in skeletal muscle by regulating coenzyme Q homeostasis. Nat Metab, 2024, 6: 209-225

[45]

Cornelissen D, de Kunder S, Si L, Reginster JY, Evers S, Boonen A, Hiligsmann M. Interventions to improve adherence to anti-osteoporosis medications: an updated systematic review. Osteoporos Int, 2020, 31: 1645-1669

[46]

Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release, 2001, 73: 121-136

[47]

Liao P, Chen L, Zhou H, Mei J, Chen ZM, Wang BQ, Feng JQ, Li GY, Tong SH, Zhou J, Zhu SY, Qian Y, Zong Y, Zou WG, Li H, Zhang WK, Yao M, Ding P, Pang YD, Gao C, Mei JL, Zhang SY, Zhang CQ, Liu DL, Zheng MH, Gao JJ. Osteocyte mitochondria regulate angiogenesis of transcortical vessels. Nat Commun, 2024, 15: 2529

[48]

Behera J, Ison J, Tyagi A, Mbalaviele G, Tyagi N. Mechanisms of autophagy and mitophagy in skeletal development, diseases and therapeutics. Life Sci, 2022, 301 120595

[49]

Wang C, Liu DD, Zhang CM, Sun JD, Feng WP, Liang XJ, Wang SX, Zhang JC. Defect-related luminescent hydroxyapatite-enhanced osteogenic differentiation of bone mesenchymal stem cells via an ATP-induced cAMP/PKA pathway. ACS Appl Mater Interfaces, 2016, 8: 11262-11271

[50]

Ren RY, Guo JC, Chen YMF, Zhang YY, Chen LX, Xiong W. The role of Ca2+/Calcineurin/NFAT signalling pathway in osteoblastogenesis. Cell Prolif, 2021, 54 e13122

[51]

Lehninger AL. Mitochondria and calcium ion transport. Biochem J, 1970, 119: 129

[52]

Zhao YN, Kang HL, Wu XP, Zhuang PZ, Tu R, Goto T, Li F, Dai HL. Multifunctional scaffold for osteoporotic pathophysiological microenvironment improvement and vascularized bone defect regeneration. Adv Healthc Mater, 2023, 12 2203099

[53]

Lin ZX, Chen ZX, Chen YW, Yang N, Shi JL, Tang ZM, Zhang CQ, Lin H, Yin JH. Hydrogenated silicene nanosheet functionalized scaffold enables immuno-bone remodeling. Exploration, 2023, 3: 20220149

[54]

Miller PD, Hattersley G, Riis BJ. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA, 2016, 316: 722-733

[55]

Lambers FM, Koch K, Kuhn G, Ruffoni D, Weigt C, Schulte FA, Müller R. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Bone, 2013, 55: 325-334

[56]

Weaver CM, Peacock M, Martin BR, McCabe GP, Zhao J, Smith DL, Wastney ME. Quantification of biochemical markers of bone turnover by kinetic measures of bone formation and resorption in young healthy females. J Bone Miner Res, 1997, 12: 1714-1720

[57]

Todd MJ, Gomez J. Enzyme kinetics determined using calorimetry: a general assay for enzyme activity?. Anal Biochem, 2001, 296: 179-187

Funding

National Natural Science Foundation of China(32171338)

Sichuan International Science and Technology Innovation Cooperation Project(2024YFHZ0308)

Major Science and Technology Projects in Yunnan Province(202302AA310038)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

AI Summary AI Mindmap
PDF

313

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/