Fluorescent Dye-Enhanced ACEL Fibers for Omnidirectional Luminescence and Voice-Interactive Human–Machine Interfaces

Ying Zhang , Mingyu Liu , Xun Wang , Yi Chen , Chao Zhang , Ziqing Li , Shilin Xu , Panpan Shen , Yaoxi Shen , Yingzhen Gong , Dehua Li , Xiao Yang , Chao Li , Yuting Lin , Tucongying Qian , Yi Hu

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) : 1788 -1802.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (6) :1788 -1802. DOI: 10.1007/s42765-025-00579-w
Research Article
research-article

Fluorescent Dye-Enhanced ACEL Fibers for Omnidirectional Luminescence and Voice-Interactive Human–Machine Interfaces

Author information +
History +
PDF

Abstract

Abstract

With the progress of flexible wearables, electronic devices have evolved from three-dimensional bulk materials and two-dimensional films to flexible one-dimensional fiber structures. Amongst all, alternating current electroluminescent (ACEL) fibers have received increasing attention due to their flexibility, weavability, and human-body compatibility. Nevertheless, ACEL still faces great challenges in achieving efficient color modulation, continuous preparation and device integration. Herein, a novel color-tunable ACEL fiber based on fluorescent dye-mediated omnidirectional color conversion is presented, where continuous deposition of functional materials is achieved by conjugated electrospinning and solution dip-coating techniques. Such fiber achieves uniform omnidirectional light emission while maintaining exceptional flexibility, mechanical durability, and water resistance, with additional color conversion capability. Together, these synergistic properties make them ideally suited for integration into smart textiles through weaving or hand embroidery processes. In addition, these ACEL fibers have been successfully integrated with sound sensors featuring speech recognition and volume detection, an advancement that paves the way for visual and barrier-free communication solutions for the hearing-impaired individuals, as well as early warning systems in high-noise environments. Overall, this work provides a new technological paradigm for textile-based wearable full-color displays with significant scientific and practical value in smart wearables, interactive e-textiles, and intelligent human–machine interfaces.

Graphical Abstract

Keywords

Conjugate electrospinning / Alternating current electroluminescent fibers / Omnidirectional luminescence / Color conversion / Sound sensors

Cite this article

Download citation ▾
Ying Zhang, Mingyu Liu, Xun Wang, Yi Chen, Chao Zhang, Ziqing Li, Shilin Xu, Panpan Shen, Yaoxi Shen, Yingzhen Gong, Dehua Li, Xiao Yang, Chao Li, Yuting Lin, Tucongying Qian, Yi Hu. Fluorescent Dye-Enhanced ACEL Fibers for Omnidirectional Luminescence and Voice-Interactive Human–Machine Interfaces. Advanced Fiber Materials, 2025, 7(6): 1788-1802 DOI:10.1007/s42765-025-00579-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shi X, Zuo Y, Zhai P, Shen J, Yang Y, Gao Z, Liao M, Wu J, Wang J, Xu X, Tong Q, Zhang B, Wang B, Sun X, Zhang L, Pei Q, Jin D, Chen P, Peng H. Large-area display textiles integrated with functional systems. Nature, 2021, 591: 240

[2]

Tian Y, Ding R, Yoon SS, Zhang S, Yu J, Ding B. Recent advances in next-generation textiles. Adv Mater, 2025, 37 2417022

[3]

Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional fiber materials to smart fiber devices. Chem Rev, 2023, 123: 613

[4]

Lee G-H, Moon H, Kim H, Lee GH, Kwon W, Yoo S, Myung D, Yun SH, Bao Z, Hahn SK. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater, 2020, 5: 149

[5]

Fang Y, Chen G, Bick M, Chen J. Smart textiles for personalized thermoregulation. Chem Soc Rev, 2021, 50: 9357

[6]

Jiang W, Lee S, Zan G, Zhao K, Park C. Alternating current electroluminescence for human-interactive sensing displays. Adv Mater, 2024, 36: 2304053

[7]

He J, Wei R, Ma X, Wu W, Pan X, Sun J, Tang J, Xu Z, Wang C, Pan C. Contactless user-interactive sensing display for human–human and human–machine interactions. Adv Mater, 2024, 36: 2401931

[8]

Liao J, Sun J, Dong F, Chang Y, Chang S, Mao X, Li N, Li X, Wang Y, Shang Y, Wang B, Shan C, Dong L. Self-powered, flexible, and instantly dynamic multi-color electroluminescence device with bi-emissive layers for optical communication. Nano Energy, 2023, 112 108488

[9]

Fang T, Zhang J, Cao S, Lu Q, Pan Y, Yang K, Wu M, Sun Y, Wang X, Kong D, Lu Y. Hybrid liquid metal/ionic nanocomposite transparent electrodes for highly stretchable electroluminescent matrix displays. Adv Funct Mater, 2025, 35: 2417982

[10]

Su L, Kuang S, Zhao Y, Li J, Zhao G, Wang ZL, Zi Y. Self-powered visualized tactile-acoustic sensor for accurate artificial perception with high brightness and record-low detection limit. Sci Adv, 2024, 10 eadq8989

[11]

Shen S, Wu H, Xu Z, Cao R, Liu Y, Zhao Y, Li X, Yu H, Chen C, Wang X, Pan C. Wearable multifunctional bilayer nanofiber films for human motion energy harvesting and photothermal therapy. Adv Funct Mater, 2025, 35 2419645

[12]

Wen J, Xu B, Gao Y, Li M, Fu H. Wearable technologies enable high-performance textile supercapacitors with flexible, breathable and wearable characteristics for future energy storage. Energy Storage Mater, 2021, 37: 94

[13]

Kang X, Song J, Liu J, Cao S, Lin Z, Jiang H, Yang Y, Cheng X, Ai Y, Sun X, Zeng K, Zhu Z, Peng H. An efficient fiber gel dye-sensitized solar cell with stable interlaced interfaces. Adv Funct Mater, 2024, 34: 2404361

[14]

Yoo J, Ha S, Lee GH, Kim Y, Choi MK. Stretchable high-resolution user-interactive synesthesia displays for visual-acoustic encryption. Adv Funct Mater, 2023, 33: 2302473

[15]

Luo Z, Chen W, Lai M, Shi S, Chen P, Yang X, Chen Z, Wang B, Zhang Y, Zhou X. Fully printable and reconfigurable Hufu-type electroluminescent devices for visualized encryption. Adv Mater, 2024, 36 2313909

[16]

Chow L, Zhang Q, Huang X, Zhang J, Zhou J, Zhu B, Li J, Huang Y, Zhang B, Li J, Wu P, Gao Y, Gao Z, Zhao G, Yao K, Liu Y, Yip J, Yang Z, Yu X. Army ant nest inspired adaptive textile for smart thermal regulation and healthcare monitoring. Adv Mater, 2025, 37: 2406798

[17]

Zhang X, Chen J, Zheng Z, Tang S, Cheng B, Zhang Z, Ma R, Chen Z, Zhuo J, Cao L, Chen Z, He J, Wang X, Yang G, Yi F. Flexible temperature sensor with high reproducibility and wireless closed-loop system for decoupled multimodal health monitoring and personalized thermoregulation. Adv Mater, 2024, 36: 2407859

[18]

Zhang Y, Wang X, Zhang Y, Liu M, Zhao Z, Shen Z, Hu Y. Wearable alternating current electroluminescent e-textiles with high brightness enabled by fully sprayed layer-by-layer assembly. Adv Funct Mater, 2024, 34: 2308969

[19]

Li W, Lu Z, Zhang Y, Zhu L, Zhang J, Zhang Y, Wu M, Zhou X, Xiong J. Recyclable and healable electro-optical fiber for sensing and information transmission. Adv Funct Mater, 2025, 242: 3596

[20]

Shanker R, Cho S, Choe A, Kim MP, Khan Z, Kang S, Ko H. Solution-processable, high-performance flexible electroluminescent devices based on high-k nanodielectrics. Adv Funct Mater, 2019, 29: 1904377

[21]

Peng H. Fiber electronics. Adv Mater, 2020, 32: 1904697

[22]

Shi Q, Sun J, Hou C, Li Y, Zhang Q, Wang H. Advanced functional fiber and smart textile. Adv Fiber Mater, 2019, 1: 3

[23]

Fakharuddin A, Li H, Di Giacomo F, Zhang T, Gasparini N, Elezzabi AY, Mohanty A, Ramadoss A, Ling J, Soultati A, Tountas M, Schmidt-Mende L, Argitis P, Jose R, Nazeeruddin MK, Mohd Yusoff ARB, Vasilopoulou M. Fiber-shaped electronic devices. Adv Energy Mater, 2021, 11: 2101443

[24]

Xu X, Xie S, Zhang Y, Peng H. The rise of fiber electronics. Angew Chem Int Ed, 2019, 58: 13643

[25]

Hou Z, Liu X, Tian M, Zhang X, Qu L, Fan T, Miao J. Smart fibers and textiles for emerging clothe-based wearable electronics: materials, fabrications and applications. J Mater Chem A, 2023, 11: 17336

[26]

Yang W, Lin S, Gong W, Lin R, Jiang C, Yang X, Hu Y, Wang J, Xiao X, Li K, Li Y, Zhang Q, Ho JS, Liu Y, Hou C, Wang H. Single body-coupled fiber enables chipless textile electronics. Science, 2024, 384: 74

[27]

Fu X, Wan G, Guo H, Kim H-J, Yang Z, Tan YJ, Ho JS, Tee BCK. Self-healing actuatable electroluminescent fibres. Nat Commun, 2024, 15: 10498

[28]

Yu X, Chen L, Zhang J, Yan W, Hughes-Riley T, Cheng Y, Zhu M. Structural design of light-emitting fibers and fabrics for wearable and smart devices. Sci Bull, 2024, 69: 2439

[29]

Yang X, Ai L, Yu J, Waterhouse GIN, Sui L, Ding J, Zhang B, Yong X, Lu S. Photoluminescence mechanisms of red-emissive carbon dots derived from non-conjugated molecules. Sci Bull, 2022, 67: 1450

[30]

Kwon S, Kim H, Choi S, Jeong EG, Kim D, Lee S, Lee HS, Seo YC, Choi KC. Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process. Nano Lett, 2018, 18: 347

[31]

Li G, Sun F, Zhao S, Xu R, Wang H, Qu L, Tian M. Autonomous electroluminescent textile for visual interaction and environmental warning. Nano Lett, 2023, 23: 8436

[32]

Liu P, Xiang Y, Liu Y, Peng SS, Zhu Z, Shi X, Wu J, Chen P. Color-tunable light-emitting fibers for pattern displaying textiles. J Mater Chem C, 2024, 12: 941

[33]

Oh S-J, Choi S-E, Woo I, Yoon JU, Bae J, Bae JW. Stretchable multicolored electroluminescent sound display for wearable and interactive textiles. Adv Funct Mater, 2025, 24: 20432

[34]

Chun F, Zhang B, Gao Y, Wei X, Zhang Q, Zheng W, Zhou J, Guo Y, Zhang X, Xing Z, Yu X, Wang F. Multicolour stretchable perovskite electroluminescent devices for user-interactive displays. Nat Photon, 2024, 18: 856

[35]

Hu X, Zhang B, You C, Tian M, Xing D, Zhang X, Qu L. Non-noble metal electroluminescent fibers for visual monitoring and interaction. Adv Fiber Mater, 2025, 7: 227

[36]

Mi H, Zhong L, Tang X, Xu P, Liu X, Luo T, Jiang X. Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display. ACS Appl Mater Interfaces, 2021, 13: 11260

[37]

Zhang Z, Cui L, Shi X, Tian X, Wang D, Gu C, Chen E, Cheng X, Xu Y, Hu Y, Zhang J, Zhou L, Fong HH, Ma P, Jiang G, Sun X, Zhang B, Peng H. Textile display for electronic and brain-interfaced communications. Adv Mater, 2018, 30 e1800323

[38]

Song S, Song B, Cho C-H, Lim SK, Jeong SM. Textile-fiber-embedded multiluminescent devices: a new approach to soft display systems. Mater Today, 2020, 32: 46

[39]

Yang C, Cheng S, Yao X, Nian G, Liu Q, Suo Z. Ionotronic luminescent fibers, fabrics, and other configurations. Adv Mater, 2020, 32: 2005545

[40]

Cho S, Chang T, Yu T, Gong SL, Lee CH. Machine embroidery of light-emitting textiles with multicolor electroluminescent threads. Sci Adv, 2024, 10 eadk4295

[41]

Zhang K, Shi X, Jiang H, Zeng K, Zhou Z, Zhai P, Zhang L, Peng H. Design and fabrication of wearable electronic textiles using twisted fiber-based threads. Nat Protoc, 2024, 19: 1557

[42]

Zuo Y, Shi X, Zhou X, Xu X, Wang J, Chen P, Sun X, Peng H. Flexible color-tunable electroluminescent devices by designing dielectric-distinguishing double-stacked emissive layers. Adv Funct Mater, 2020, 30 2005200

[43]

Lee S, Roh H, Kim J, Chung S, Seo D, Moon W, Cho K. An electret-powered skin-attachable auditory sensor that functions in harsh acoustic environments. Adv Mater, 2022, 34: 2205537

[44]

Cheng Y, Jabeen S, Lei S, Liu N, Liu Y, Liu Y, Li Y, Wu X, Tong Z, Yu J, Cao P, Kang Z, Li H. N-doped carbon dots-modulated interfacial charge transfer and surface structure in FeNbO4 photocatalysts for enhanced CO2 conversion selectivity to CH4. Chem Eng J, 2024, 498 155576

[45]

Lang Z, Wang X, Jabeen S, Cheng Y, Liu N, Liu Z, Gan T, Zhuang Z, Li H, Wang D. Destabilization of single-atom catalysts: characterization, mechanisms, and regeneration strategies. Adv Mater, 2025, 37: 2418942

[46]

Wang B, Lu S. The light of carbon dots: from mechanism to applications. Matter, 2022, 5: 110

[47]

Zhang Y, Lu S. Lasing of carbon dots: chemical design, mechanisms, and bright future. Chem, 2024, 10: 134

[48]

Wang Z, Liu Y, Zhou Z, Chen P, Peng H. Towards integrated textile display systems. Nat Rev Electr Eng, 2024, 1: 466

[49]

Wang X, Lin Y, Zhang Y, Xu S, Liu M, Shen Y, Gong Y, Xiong Y, Hu Y. Coplanar pattern and temperature transient control in intelligent wearable multi-color alternating current electroluminescence devices. Adv Funct Mater, 2025, 24: 20613

[50]

Liang G, Yi M, Hu H, Ding K, Wang L, Zeng H, Tang J, Liao L, Nan C, He Y, Ye C. Coaxial-structured weavable and wearable electroluminescent fibers. Adv Electron Mater, 2017, 3: 1700401

[51]

Harvey CJ, LeBouf RF, Stefaniak AB. Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol In Vitro, 2010, 24: 1790

[52]

Liu Y, Xu M, Long H, Vasiliev RB, Li S, Meng H, Chang S. Alternating current electroluminescence devices: recent advances and functional applications. Mater Horiz, 2024, 11: 5147

[53]

Chang S, Deng Y, Li N, Wang L, Shan C-X, Dong L. Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile. Nano Res, 2023, 16: 9379

[54]

Torres Alonso E, Rodrigues DP, Khetani M, Shin D-W, De Sanctis A, Joulie H, de Schrijver I, Baldycheva A, Alves H, Neves AIS, Russo S, Craciun MF. Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles. NPJ Flex Electron, 2018, 2 25

[55]

Xu S, Shen P, Shen Z, Chen R, Zhang D, Zhao Z, Zhang Y, Li D, Xiong Y, Wang X, Hu Y, Zhao J. Cathode-less zinc-manganese fiber batteries with reinforced-concrete structured composite hydrogel electrolytes. Chem Eng J, 2025, 504 158509

Funding

Zhejiang Provincial Natural Science Foundation of China(LY21E030023)

Zhejiang Sci-Tech University Shengzhou Innovation Research Institute(SYY2024C000008)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

/