Three Birds with One Stone: Decoration of Carbon Fiber Fabric with MnO2 Nanoplates for Efficient Photo/Electro-thermal Evaporation of Seawater
Zhouliang Chen , Xiaolong Li , Tianwei Zhai , Zhigang Chen , Mohsen Salimi , Majid Amidpour , Lisha Zhang
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (5) : 1563 -1575.
Three Birds with One Stone: Decoration of Carbon Fiber Fabric with MnO2 Nanoplates for Efficient Photo/Electro-thermal Evaporation of Seawater
Photo/electro-thermal evaporation is a promising tactic for alleviating the scarcity of fresh water, but its practical application still faces many challenges such as weak photoabsorption, high vaporization enthalpy and serious water-electrolysis during photo-thermal/electrothermal evaporation. To solve these problems, inspired by black rose petal and electric heater, we report a biomimetic design of fabric for achieving efficient photothermal/electrothermal desalination. The photo/electrothermal fabric is fabricated by decorating super-hydrophilic MnO2 nanoplates as shell on hydrophobic carbon fiber (CF) as core via an electro-deposition method. MnO2 nanoplate decoration as a stone confers three fascinating features (birds): (I) the hydrophilic nature of MnO2 contributes to the fabric’s superhydrophilicity and decreased evaporation enthalpy (2032 kJ kg−1) in comparison with that (2410 kJ kg−1) of pure water; (II) nanoplate structure confers the light-trapping effect and thus the improved photoabsorption efficiency of 95.1%; (III) CF-core/MnO2-shell structure can effectively suppress electrolysis of water and lead to good electrothermal conversion property. As a result, CF/MnO2 fabric-based hanging evaporator shows the high photo-thermal evaporation rate of 2.3 kg m−2 h−1 at 1 sun (1 kW m−2) and electrothermal evaporation rate of 5.3 kg m−2 h−1 at 3 V. Importantly, by the combined effects of 1 sun and 3 V, CF/MnO2 fabric achieves a striking synergetic evaporation rate of 8.5 kg m−2 h−1, exceeding the sum (7.5 kg m−2 h−1) of the individual photo-thermal and electro-thermal evaporation rates. The present high synergetic evaporation performance benefits from efficient photo/electrothermal conversion of the fabric and sufficient water-supplementation at the fiber-water interface resulting from thermosiphon effect. Thus, this study offers a novel possibility in the rational design of photo-electrothermal materials for efficient evaporation of seawater.
MnO2 nanoplate / Carbon fiber / Photo-thermal/electrothermal fabric / All-weather seawater evaporation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
Li XL, Chen YH, Zhu B, Salimi M, Zhang LS, Amidpour M, Zhu MF, Chen ZG. Biomimetic design of photothermal/electrothermal fabric composed of carbon-core/nanorod-array-shell fibers for efficient all-weather seawater evaporation. Adv Funct Mater. 2025;2423472. |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
Donghua University, Shanghai, China
/
| 〈 |
|
〉 |