Compressible Piezoelectric Ceramic Nanofiber Aerogels with Multifunction

Yuan Gao , Pi-Hang Yu , Jun Zhang , Guo-Dong Zhang , Chuan-Hui Guo , Yi-Qian Zhou , Yun-Ze Long , Hui Wu

Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (3) : 937 -949.

PDF
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (3) : 937 -949. DOI: 10.1007/s42765-025-00535-8
Research Article

Compressible Piezoelectric Ceramic Nanofiber Aerogels with Multifunction

Author information +
History +
PDF

Abstract

Lead-free barium titanate (BaTiO3) nanofiber material is an attractive functional material. However, as a ceramic material, its inherent brittleness significantly limits its widespread application. Herein, we optimized the solution blow spinning process using aerodynamic simulations, enabling the efficient fabrication of layered barium titanate/aluminum oxide (BaTiO3/Al2O3) ceramic nanofiber aerogels. The incorporation of amorphous Al2O3 repaired the defects in the nanofibers, providing aerogels with outstanding mechanical properties. For example, these aerogels can support nearly 1000 times their own weight, exhibit a tensile strain of 11%, and demonstrate exceptional compressive resilience and fatigue resistance. Additionally, the aerogels demonstrated superior performance in flexible electronics, thermal protection, sound absorption, and high-temperature filtration. This research paves the way for the large-scale production and extensive application of flexible piezoelectric ceramic aerogels.

Graphical abstract

Keywords

Barium titanate / Piezoelectric / Ceramic aerogels / Solution blow spinning / Nanofibers / Engineering / Materials Engineering

Cite this article

Download citation ▾
Yuan Gao, Pi-Hang Yu, Jun Zhang, Guo-Dong Zhang, Chuan-Hui Guo, Yi-Qian Zhou, Yun-Ze Long, Hui Wu. Compressible Piezoelectric Ceramic Nanofiber Aerogels with Multifunction. Advanced Fiber Materials, 2025, 7(3): 937-949 DOI:10.1007/s42765-025-00535-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FuDW, CaiHL, LiuYM, YeQ, ZhangW, ZhangY, ChenXY, GiovannettiG, CaponeM, LiJY, XiongRG. Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal. Science, 2013, 339: 425

[2]

LeeMH, KimDJ, ParkJS, KimSW, SongTK, KimMH, KimWJ, DoD, JeongIK. High-performance lead-free piezoceramics with high curie temperatures. Adv Mater, 2015, 27: 6976

[3]

HaoJG, LiW, ZhaiJW, ChenH. Progress in high-strain perovskite piezoelectric ceramics. Mater Sci Eng R-Rep, 2019, 135: 1

[4]

AcostaM, NovakN, RojasV, PatelS, VaishR, KoruzaJ, RossettiGA, RödelJ. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev, 2017, 4: 041305

[5]

YangW, LinS, GongW, LinR, JiangC, YangX, HuY, WangJ, XiaoX, LiK. Single body-coupled fiber enables chipless textile electronics. Science, 2024, 384: 74

[6]

HuangZX, LiLW, HuangYZ, RaoWX, JiangHW, WangJ, ZhangHH, HeHZ, QuJP. Self-poled piezoelectric polymer composites via melt-state energy implantation. Nat Commun, 2024, 15: 819

[7]

ZhouXR, ParidaK, ChenJ, XiongJQ, ZhouZH, JiangF, XinYY, MagdassiS, LeePS. 3D printed auxetic structure-assisted piezoelectric energy harvesting and sensing. Adv Energy Mater, 2023, 13: 2301159

[8]

PanH, LanS, XuSQ, ZhangQH, YaoHB, LiuYQ, MengFQ, GuoEJ, GuL, YiD, WangXRS, HuangHB, MacManus-DriscollJL, ChenLQ, JinKJ, NanCW, LinYH. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science, 2021, 374: 100

[9]

WangC, LiuM, ThijsM, OomsFGB, GanapathyS, WagemakerM. High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells. Nat Commun, 2021, 12: 6536

[10]

JayakrishnanAR, SilvaJPB, KamakshiK, DastanD, AnnapureddyV, PereiraM, SekharKC. Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors?. Prog Mater Sci, 2023, 132: 101046

[11]

KimT, KimHJ, ChoiW, LeeYM, PyoJH, LeeJS, KimJ, KimJ, KimJH, KimC, KimWJ. Deep brain stimulation by blood-brain-barrier-crossing piezoelectric nanoparticles generating current and nitric oxide under focused ultrasound. Nat Biomed Eng, 2023, 7: 149

[12]

ZhuP, ChenY, ShiJL. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv Mater, 2020, 32: 2001976

[13]

KubotaK, PangYD, MiuraA, ItoH. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science, 2019, 366: 1500

[14]

WangYJ, LiX, ChenYK, LiY, LiuZ, FangCQ, WuT, NiuHS, LiY, SunWG, TangWJ, XiaW, SongKP, LiuH, ZhouWJ. Pulsed-laser-triggered piezoelectric photocatalytic CO2 reduction over tetragonal BaTiO3 nanocubes. Adv Mater, 2023, 35: 2305257

[15]

AbelS, EltesF, OrtmannJE, MessnerA, CasteraP, WagnerT, UrbonasD, RosaA, GutierrezAM, TulliD, MaP, BaeuerleB, JostenA, HeniW, CaimiD, CzornomazL, DemkovAA, LeutholdJ, SanchisP, FompeyrineJ. Large pockels effect in micro-and nanostructured barium titanate integrated on silicon. Nat Mater, 2019, 18: 42

[16]

SavoR, MorandiA, MüllerJS, KaufmannF, TimpuF, EscaléMR, ZaniniM, IsaL, GrangeR. Broadband mie driven random quasi-phase-matching. Nat Photonics, 2020, 14: 740

[17]

DongGH, LiSZ, YaoMT, ZhouZY, ZhangYQ, HanX, LuoZL, YaoJX, PengB, HuZQ, HuangHB, JiaTT, LiJY, RenW, YeZG, DingXD, SunJ, NanCW, ChenLQ, LiJ, LiuM. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science, 2019, 366: 475

[18]

FuWL, XuWL, YinKB, MengXY, WenYJ, PengLM, TangMY, SunLT, SunYM, DaiYQ. Flexible-in-rigid polycrystalline titanium nanofibers: a toughening strategy from a macro-scale to a molecular-scale. Mater Horizons, 2023, 10: 65

[19]

LiLH, XuTC, ZhangFP, DuCH, HeS. Preparation of super-flexible silica aerogel and its application in oil-water separation. Gels, 2023, 9: 739

[20]

YanJH, HanYH, XiaSH, WangX, ZhangYY, YuJY, DingB. Polymer template synthesis of flexible BaTiO3 crystal nanofibers. Adv Funct Mater, 2019, 29: 1907919

[21]

XiaSH, WeiCL, ZhaiY, DingB, YuJY, YanJH. Ultrasonic cavitation enhanced photocatalytic CO2 reduction by superior flexible black BaTiO3 nanofibers. Chem Eng J, 2023, 475: 146516

[22]

YuY, WangXX, XieGX, MaJQ, LvTY, DuKF, HuH, ZhangJ, LiYQ, LongYZ, RuanKQ, RamakrishnaS. Preparation and piezoelectric catalytic performance of flexible inorganic Ba1-xCaxTiO3 via electrospinning. J Mater Chem A, 2021, 9: 24695

[23]

LiuC, LiaoYL, JiaoWL, ZhangXH, WangN, YuJY, LiuYT, DingB. High toughness combined with high strength in oxide ceramic nanofibers. Adv Mater, 2023, 35: 2304401

[24]

SuL, JiaSH, RenJQ, LuXF, GuoSW, GuoPF, CaiZX, LuD, NiuM, ZhuangL, PengK, WangHJ. Strong yet flexible ceramic aerogel. Nat Commun, 2023, 14: 7057

[25]

DongSL, MaciejewskaB, MillarR, GrobertN. 3D electrospinning of Al2O3/ZrO2 fibrous aerogels for multipurpose thermal insulation. Adv Compos Hybrid Mater, 2023, 6: 186

[26]

LiL, FangB, RenDS, FuL, ZhouYQ, YangC, ZhangFS, FengXN, WangL, HeXM, QiPP, LiuY, JiaC, ZhaoSY, XuF, WeiXD, WuH. Thermal-switchable, trifunctional ceramic-hydrogel nanocomposites enable full-lifecycle security in practical battery systems. ACS Nano, 2022, 16: 10729

[27]

WangHX, ChengLD, YuJY, SiY, DingB. Biomimetic bouligand chiral fibers array enables strong and superelastic ceramic aerogels. Nat Commun, 2024, 15: 336

[28]

ChengXT, LiuYT, SiY, YuJY, DingB. Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning. Nat Commun, 2022, 13: 2637

[29]

WangY, HuangHB, ZhaoY, FengZM, FanHT, SunT, XuY. Self-assembly of ultralight and compressible inorganic sponges with hierarchical porosity by electrospinning. Ceram Int, 2020, 46: 768

[30]

LiL, ZhouYQ, GaoY, FengXN, ZhangFS, LiWW, ZhuB, TianZ, FanPX, ZhongML, NiuHC, ZhaoSY, WeiXD, ZhuJ, WuH. Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition. Nat Commun, 2023, 14: 5410

[31]

SuL, WangHJ, NiuM, DaiS, CaiZX, YangBG, HuyanHX, PanXQ. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci Adv, 2020, 6: eaay6689

[32]

LiMZ, XiaoLB, GuoPF, NiHT, LuD, XuL, WangL, ZhangJJ, SuL, WangHJ. Resilient and antipuncturing Si3N4 nanofiber sponge. Nano Lett, 2023, 23: 1289

[33]

SuL, WangHJ, JiaSH, DaiS, NiuM, RenJQ, LuXF, CaiZX, LuD, LiMZ, XuL, GuoSW, ZhuangL, PengK. Highly stretchable, crack-insensitive and compressible ceramic aerogel. ACS Nano, 2021, 15: 18354

[34]

XuX, ZhangQQ, HaoML, HuY, LinZY, PengLL, WangT, RenXX, WangC, ZhaoZP, WanCZ, FeiHL, WangL, ZhuJ, SunHT, ChenWL, DuT, DengBW, ChengGJ, ShakirI, DamesC, FisherTS, ZhangX, LiH, HuangY, DuanXF. Double-negative-index ceramic aerogels for thermal superinsulation. Science, 2019, 363: 723

[35]

JiaC, LiL, LiuY, FangB, DingH, SongJN, LiuYB, XiangKJ, LinS, LiZW, SiWJ, LiB, ShengX, WangDZ, WeiXD, WuH. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat Commun, 2020, 11: 3732

[36]

WangHL, ZhangX, WangN, LiY, FengX, HuangY, ZhaoCS, LiuZL, FangMH, OuG, GaoHJ, LiXY, WuH. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges. Sci Adv, 2017, 3: e1603170

[37]

GuoJR, FuSB, DengYP, XuX, LaimaS, LiuDZ, ZhangPY, ZhouJ, ZhaoH, YuHX, DangSX, ZhangJI, ZhaoYD, LiH, DuanXF. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature, 2022, 606: 909

[38]

LiZW, CuiZW, ZhaoLH, HussainN, ZhaoYZ, YangC, JiangXY, LiL, SongJA, ZhangBP, ChengZK, WuH. High-throughput production of kilogram-scale nanofibers by karman vortex solution blow spinning. Sci Adv, 2022, 8: eabn3690

[39]

FrankbergEJ, KalikkaJ, FerreFG, Joly-PottuzL, SalminenT, HintikkaJ, HokkaM, KonetiS, DouillardT, Le SaintB, KreimlP, CordillMJ, EpicierT, StaufferD, VanazziM, RoibanL, AkolaJ, Di FonzoF, LevanenE, Masenelli-VarlotK. Highly ductile amorphous oxide at room temperature and high strain rate. Science, 2019, 366: 864

[40]

XiaSH, ZhaoY, YanJH, YuJY, DingB. Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO3 ceramic nanofiber films. ACS Nano, 2021, 15: 3161

[41]

MiLJ, ZhangQK, WangHW, WuZJ, GuoYX, LiYM, XiongXY, LiuKF, FuWJ, MaY, WangBZ, QiXW. Synthesis of BaTiO3 nanoparticles by sol-gel assisted solid phase method and its formation mechanism and photocatalytic activity. Ceram Int, 2020, 46: 10619

[42]

PandeyA, KumarR, MondalDP, KumarP, SinghS. Nickel oxide-sprinkled in-situ grown hierarchal graphitic jungle anchored feathery aluminum foam: a novel material for remarkable electromagnetic waves absorption. Mater Today Nano, 2023, 21: 100301

[43]

PattersonA. The scherrer formula for X-ray particle size determination. Phys Rev, 1939, 56: 978

[44]

WuF, QiangSY, ZhangXH, WangF, YinX, LiuLF, YuJY, LiuYT, DingB. The rising of flexible and elastic ceramic fiber materials: fundamental concept, design principle, and toughening mechanism. Adv Funct Mater, 2022, 32: 2207130

[45]

ChorsiMT, CurryEJ, ChorsiHT, DasR, BaroodyJ, PurohitPK, IliesH, NguyenTD. Piezoelectric biomaterials for sensors and actuators. Adv Mater, 2019, 31: 1802084

[46]

WuMR, ShaoZY, ZhaoNF, ZhangRZ, YuanGD, TianLL, ZhangZB, GaoWW, BaiH. Biomimetic, knittable aerogel fiber for thermal insulation textile. Science, 2023, 382: 1379

[47]

XuX, FuSB, GuoJR, LiH, HuangY, DuanXF. Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater Today, 2021, 42: 162

[48]

LiL, JiaC, LiuY, FangB, ZhuWQ, LiXY, SchaeferLA, LiZW, ZhangFS, FengXN, HussainN, XiXQ, WangD, LinYH, WeiXD, WuH. Nanograin-glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Mater Today, 2022, 54: 72

[49]

CuiY, GongHX, WangYJ, LiDW, BaiH. A thermally insulating textile inspired by polar bear hair. Adv Mater, 2018, 30: 1706807

[50]

YanW, NoelG, LokeG, MeiklejohnE, KhudiyevT, MarionJ, RuiGC, LinJN, CherstonJ, SahasrabudheA, WilbertJ, WicaksonoI, HoytRW, MissakianA, ZhuL, MaC, JoannopoulosJ, FinkY. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature, 2022, 603: 616

[51]

LiuYJ, LyuLH, GuoJ, WangY. Sound absorption performance of the poplar seed fiber/PCL composite materials. Materials, 2020, 13: 1465

[52]

ChenDH, ZhengS, JingMY, YuZQ, ZhangJW, YuLJ, SunSL, WangSW. Enhancing sound insulation of glass interlayer films by introducing piezoelectric fibers. Mater Adv, 2023, 4: 2466

[53]

FanZY, WuSL, FangKY, TangF, ZhangLB, HuangFL. High-efficiency absorption and acoustoelectric conversion in heterogeneous nanofibers: a two-pronged approach to full-frequency de-noising. J Mater Chem A, 2023, 11: 13378

[54]

RahimabadyM, StatharasEC, YaoK, MirshekarlooMS, ChenST, TayFEH. Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption. Appl Phys Lett, 2017, 111: 241601

[55]

LeTT, CurryEJ, VinikoorT, DasR, LiuY, SheetsD, TranKTM, HawxhurstCJ, StevensJF, HancockJN, BilalOR, ShorLM, NguyenTD. Piezoelectric nanofiber membrane for reusable, stable, and highly functional face mask filter with long-term biodegradability. Adv Funct Mater, 2022, 32: 2113040

[56]

HuangZY, DangC, SunZX, QiHS. High-efficiency air filter media with a three-dimensional network composed of core-shell zeolitic imidazolate framework-8@tunicate nanocellulose for PM0.3 removal. ACS Appl Mater Interfaces, 2021, 13: 57921

[57]

JiaC, LiuYB, LiL, SongJN, WangHY, LiuZL, LiZW, LiB, FangMH, WuH. A foldable all-ceramic air filter paper with high efficiency and high-temperature resistance. Nano Lett, 2020, 20: 4993

[58]

WangHL, LinS, YangS, YangXD, SongJN, WangD, WangHY, LiuZL, LiB, FangMH, WangN, WuH. High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge. Small, 2018, 14: 1800258

[59]

ZhangRF, LiuC, HsuPC, ZhangCF, LiuN, ZhangJS, LeeHR, LuYY, QiuYC, ChuS, CuiY. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett, 2016, 16: 3642

Funding

National Natural Science Foundation of China(52273077)

State Key Laboratory of Bio-Fibers & Eco-Textiles, Qingdao University(ZDKT202108)

RIGHTS & PERMISSIONS

Donghua University, Shanghai, China

AI Summary AI Mindmap
PDF

281

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/