A Time-Scheduled Oxygen Modulation System Facilitates Bone Regeneration by Powering Periosteal Stem Cells
Yujie Yang , Xue Gao , Yongfeng Zhang , Shengyou Li , Haining Wu , Bing Xia , Yiming Hao , Beibei Yu , Xueli Gao , Dan Geng , Lingli Guo , Mingze Qin , Yitao Wei , Borui Xue , Shijie Yang , Qi Liu , Shihao Nie , Anhui Qin , Jinya Liu , Lei Lu , Teng Ma , Zhuojing Luo , Jinghui Huang
Advanced Fiber Materials ›› 2025, Vol. 7 ›› Issue (2) : 587 -606.
A Time-Scheduled Oxygen Modulation System Facilitates Bone Regeneration by Powering Periosteal Stem Cells
Chronic hypoxia affects stem cell function during tissue repair. Thus far, the hypoxia-associated impact on periosteal stem cells (PSCs), the main contributor to bone repair, remains unknown, and a tailored oxygen modulation strategy for optimizing PSC function is lacking. Here, PSCs exhibit time-dependent proliferation and survival upon hypoxic exposure and a critical 48-h time-point is identified at which hypoxia transitions from beneficial to detrimental. Then, a photothermal-sensitive coaxial fiber-reinforced membrane containing oxygen and pravastatin is constructed to function as an intelligent oxygen supply system. Leveraging near-infrared light as an ON/OFF switch, the system noninvasively scales up oxygen release beginning 48 h post-implantation, counteracting prolonged hypoxia and mitigating its adverse effects on PSCs. The sustained release of pravastatin from the membrane accelerates early neovascularization both directly through its pro-angiogenic effect and indirectly by stimulating vascular endothelial growth factor secretion from PSCs, ensuring a continuous oxygen supply after exogenous oxygen exhaustion. Notably, pravastatin steers PSCs toward robust osteogenic differentiation and provides multifunctional bioactive cues for advanced bone regeneration in vivo. This time-scheduled approach to modulate oxygen supply noninvasively could be applicable beyond bone regeneration for hypoxia-related diseases and multi-tissue repair.
Bone regeneration / Periosteal stem cells / Remote control / Oxygen delivery / Rapid neovascularization
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
Donghua University, Shanghai, China
/
| 〈 |
|
〉 |