A Portable, Sprayable, Highly Malleable, Elastic, and Hydrophobic Antibacterial Fibrous Wound Dressing for Infected Wound Healing
Liangpei Zhang , Yutong Yang , Jiaxin Wang , Hui Zhang , Zhong Zhang , Baolin Guo
Advanced Fiber Materials ›› 2024, Vol. 7 ›› Issue (2) : 528 -540.
A Portable, Sprayable, Highly Malleable, Elastic, and Hydrophobic Antibacterial Fibrous Wound Dressing for Infected Wound Healing
Wound injuries are prevalent, and inappropriate dressings can heighten the risk of bacterial infections and extend the duration of recovery. Conventional wound dressings lack adaptability to the skin, and provide insufficient anti-leakage properties, failing to offer effective physical protection. Films composed of nano- or micro-fibers, due to their suitable softness and excellent deformation capabilities, are apt for wound repair. While electrospinning is employed to produce fibrous wound dressings, its complex procedures and the use of high voltage electric fields can impair the activity of bioactive molecules. In this study, we employed solution blow spinning to produce in-situ hybrids of hydrogenated styrene–butadiene–styrene (SEBS) block copolymer with Ag or TiO2 nanoparticles for wound dressings. The SEBS polymer forms a closely fitting fibrous membrane on the skin surface via rapid solvent evaporation driven by high-speed airflow. This fibrous membrane demonstrates optimal hydrophobicity, breathability, ductility, and flexibility, aligning well with human skin, to ensure effective physical protection. Upon incorporation of Ag nanoparticles, the fibrous membrane displays robust antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). Evaluations of wound healing in MRSA-infected wounds, when compared to commercial Tegaderm™ films, show that the SEBS-based fibrous membranes effectively reduce infection, expedite wound closure, enhance collagen deposition, suppress the expression of inflammation-related cytokines and elevate the expression of angiogenesis-related cytokines, thus significantly promoting infected wounds.
A solution blow spinning fibrous membrane was developed for the fabrication of in-situ wound dressings with high flexibility, ease of peeling off, waterproof nature, and prevention of blood penetration.
Solution blow spinning / In-situ wound dressing / Hydrophobic / Antibacterial / Wound healing / Engineering / Materials Engineering
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
Sas I, Gorga RE, Joines JA, Thoney KA. Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning. J Polym Sci Part B Polym. Phys.2012; 50: 824. |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
Donghua University, Shanghai, China
/
| 〈 |
|
〉 |