Bio-inspired and Multifunctional Polyphenol-Coated Textiles

Wenjing Liu, Rong Zhang, Gaigai Duan, Ling Zhang, Yiwen Li, Lei Yang

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (4) : 952-977. DOI: 10.1007/s42765-024-00403-x

Bio-inspired and Multifunctional Polyphenol-Coated Textiles

Author information +
History +

Abstract

Polyphenol is a promising bio-inspired material vital for the creation of various functional systems. The increasing trend in developement and application of polyphenol-coated textiles not only showcases its global relevance but also indicates the extensive scientific research interest in this field. Polyphenol's numerous functional groups play a pivotal role as structural units for covalent and/or non-covalent interactions with polymers, as well as for anchoring transition metal ions crucial for the formation of multi-functional textiles. Consequently, polyphenol enhances textiles with diverse capabilities, such as hydrophobicity, flame retardance, photothermal conversion, and antibacterial properties. This emergent material has rapidly found its way into an array of applications, including solar evaporators, water purification, wound dressings, and thermal management. This review aims to offer an encompassing summary of the recent advances in the field of bio-inspired and multifunctional polyphenol-coated textiles. Polyphenols were introduced as the building blocks of textiles and exhaustively discussed their design and functionality within the textile framework. Moreover, these functions spurred myriad intriguing applications for textiles. Some of the key challenges were also explored in this emerging field, which were bound to stimulate thinking processes in multi-functional textile design.

Overview of bio-inspired polyphenol-coated textiles

Keywords

Bio-inspired / Polyphenol / Functional textile / Application

Cite this article

Download citation ▾
Wenjing Liu, Rong Zhang, Gaigai Duan, Ling Zhang, Yiwen Li, Lei Yang. Bio-inspired and Multifunctional Polyphenol-Coated Textiles. Advanced Fiber Materials, 2024, 6(4): 952‒977 https://doi.org/10.1007/s42765-024-00403-x

References

[1]
Hibbert R. What textile fibres are applicable for the layering system for the active ageing?. Textile-led design for the active ageing population, 2015 Elsevier 329-359,
CrossRef Google scholar
[2]
Lustig SR, Biswakarma JJH, Rana D, Tilford SH, Hu W, Su M, Rosenblatt MS. Effectiveness of common fabrics to block aqueous aerosols of virus-like nanoparticles. ACS Nano, 2020, 14: 7651,
CrossRef Google scholar
[3]
Qian J, Dong Q, Chun K, Zhu D, Zhang X, Mao Y, Culver JN, Tai S, German JR, Dean DP, et al.. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Nat Nanotechnol, 2023, 18: 168,
CrossRef Google scholar
[4]
Bao X, Wu L, Yu Y, Xu B, Cui L, Zhou M, Wang Q, Wang P. A photothermal cellulose-based material for rapid anti-bacteria and HCHO removal via sequential formation of MnO2 coatings and amine-quinone networks. Chem Eng J, 2023, 468,
CrossRef Google scholar
[5]
Han H, Zhu J, Wu DQ, Li FX, Wang XL, Yu JY, Qin XH. Inherent guanidine nanogels with durable antibacterial and bacterially antiadhesive properties. Adv Funct Mater, 2019, 29(12): 1806594,
CrossRef Google scholar
[6]
Bao B, Fan J, Wang Z, Wang Y, Wang W, Qin X, Yu D. Sodium deca-tungstate/polyacrylic acid self-assembled flexible wearable photochromic composite fabric for solar UV detector. Compos B Eng, 2020, 202,
CrossRef Google scholar
[7]
Li W, Zhang Y, Yu Z, Zhu T, Kang J, Liu K, Li Z, Tan SC. In situ growth of a stable metal-organic framework (MOF) on flexible fabric via a layer-by-layer strategy for versatile applications. ACS Nano, 2022, 16: 14779,
CrossRef Google scholar
[8]
Li N, Pranantyo D, Kang E-T, Wright DS, Luo H-K. In situ self-assembled polyoxotitanate cages on flexible cellulosic substrates: multifunctional coating for hydrophobic, antibacterial, and UV-blocking applications. Adv Funct Mater, 2018, 28: 1800345,
CrossRef Google scholar
[9]
Zhu T, Ni Y, Zhao K, Huang J, Cheng Y, Ge M, Park C, Lai Y. A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming. ACS Nano, 2022, 16: 18018,
CrossRef Google scholar
[10]
Yang T, Wang S, Yang H, Gui H, Du Y, Liang F. Temperature-triggered dynamic Janus fabrics for smart directional water transport. Adv Funct Mater, 2023, 33: 2214183,
CrossRef Google scholar
[11]
Wang S, Li D, Zhou Y, Jiang L. Hierarchical Ti3C2Tx MXene/Ni Chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano, 2020, 14: 8634,
CrossRef Google scholar
[12]
Wei Y, Li X, Wang Y, Hirtz T, Guo Z, Qiao Y, Cui T, Tian H, Yang Y, Ren T-L. Graphene-based multifunctional textile for sensing and actuating. ACS Nano, 2021, 15: 17738,
CrossRef Google scholar
[13]
Liu L-X, Chen W, Zhang H-B, Wang Q-W, Guan F, Yu Z-Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv Funct Mater, 2019, 29: 1905197,
CrossRef Google scholar
[14]
Zhang Y, Li Y, Li K, Kwon YS, Tennakoon T, Wang C, Chan KC, Fu S-C, Huang B, Chao CYH. A large-area versatile textile for radiative warming and biomechanical energy harvesting. Nano Energy, 2022, 95,
CrossRef Google scholar
[15]
Mao L, Zhou M, Yao L, Yu H, Yan X, Shen Y, Chen W, Ma P, Ma Y, Zhang S, et al.. Crocodile skin-inspired protective composite textiles with pattern-controllable soft-rigid unified structures. Adv Funct Mater, 2023, 33: 2213419,
CrossRef Google scholar
[16]
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional textile materials for blocking COVID-19 transmission. ACS Nano, 2023, 17: 1739,
CrossRef Google scholar
[17]
Wang H, Wang H, Wang Y, Su X, Wang C, Zhang M, Jian M, Xia K, Liang X, Lu H, et al.. Laser writing of Janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano, 2020, 14: 3219,
CrossRef Google scholar
[18]
Lee DT, Jamir JD, Peterson GW, Parsons GN. Protective fabrics: metal-organic framework textiles for rapid photocatalytic sulfur mustard simulant detoxification. Matter, 2020, 2: 404,
CrossRef Google scholar
[19]
Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron, 2022, 5: 142,
CrossRef Google scholar
[20]
Xiao X, Yin J, Chen G, Shen S, Nashalian A, Chen J. Bioinspired acoustic textiles with nanoscale vibrations for wearable biomonitoring. Matter, 2022, 5: 1342,
CrossRef Google scholar
[21]
Chang T, Akin S, Kim MK, Murray L, Kim B, Cho S, Huh S, Teke S, Couetil L, Jun MB-G, et al.. A programmable dual-regime spray for large-scale and custom-designed electronic textiles. Adv Mater, 2022, 34: 2108021,
CrossRef Google scholar
[22]
Tian X, Lee PM, Tan YJ, Wu TLY, Yao H, Zhang M, Li Z, Ng KA, Tee BCK, Ho JS. Wireless body sensor networks based on metamaterial textiles. Nat Electron, 2019, 2: 243,
CrossRef Google scholar
[23]
Wu X, Li J, Jiang Q, Zhang W, Wang B, Li R, Zhao S, Wang F, Huang Y, Lyu P, et al.. An all-weather radiative human body cooling textile. Nat Sustain, 2023, 6: 1446,
CrossRef Google scholar
[24]
Peng Y, Cui Y. Advanced textiles for personal thermal management and energy. Joule, 2020, 4: 724,
CrossRef Google scholar
[25]
Yong E, Nam D, Kim Y, Kim K, Kim B-H, Ko Y, Cho J. An electrochemically active textile current collector with a high areal capacity and a strong energy recovery effect using an interfacial interaction assembly. Energy Stor Mater, 2023, 60
[26]
Chen R, Tang H, He P, Zhang W, Dai Y, Zong W, Guo F, He G, Wang X. Interface engineering of biomass-derived carbon used as ultrahigh-energy-density and practical mass-loading supercapacitor electrodes. Adv Funct Mater, 2023, 33: 2212078,
CrossRef Google scholar
[27]
Li X, Yuan L, Liu R, He H, Hao J, Lu Y, Wang Y, Liang G, Yuan G, Guo Z. Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors. Adv Energy Mater, 2021, 11: 2003010,
CrossRef Google scholar
[28]
Cong Z, Guo W, Guo Z, Chen Y, Liu M, Hou T, Pu X, Hu W, Wang ZL. Stretchable coplanar self-charging power textile with resist-dyeing triboelectric nanogenerators and microsupercapacitors. ACS Nano, 2020, 14: 5590,
CrossRef Google scholar
[29]
Qiu H, Qu X, Zhang Y, Chen S, Shen Y. Robust PANI@MXene/GQDs-based fiber fabric electrodes via microfluidic wet-fusing spinning chemistry. Adv Mater, 2023, 35: 2302326,
CrossRef Google scholar
[30]
Ding R, Xiong J, Yan Q, Chen Z, Liu Z, Zhao X, Peng Q, He X. Achieving fast interfacial solar vapor generation and aqueous acid purification using Ti3C2Tx MXene/PANI non-woven fabrics. Mater Horiz, 2023, 10: 2262,
CrossRef Google scholar
[31]
Lv T, Cheng R, Wei C, Su E, Jiang T, Sheng F, Peng X, Dong K, Wang ZL. All-fabric direct-current triboelectric nanogenerators based on the tribovoltaic effect as power textiles. Adv Energy Mater, 2023, 13: 2301178,
CrossRef Google scholar
[32]
Wang H, Li S, Wang Y, Wang H, Shen X, Zhang M, Lu H, He M, Zhang Y. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv Mater, 2020, 32: 1908214,
CrossRef Google scholar
[33]
Eagleton AM, Ko M, Stolz RM, Vereshchuk N, Meng Z, Mendecki L, Levenson AM, Huang C, MacVeagh KC, Mahdavi-Shakib A, et al.. Fabrication of multifunctional electronic textiles using oxidative restructuring of copper into a cu-based metal-organic framework. J Am Chem Soc, 2022, 144: 23297,
CrossRef Google scholar
[34]
Cheung YH, Ma K, van Leeuwen HC, Wasson MC, Wang X, Idrees KB, Gong W, Cao R, Mahle JJ, Islamoglu T, et al.. Immobilized regenerable active chlorine within a zirconium-based MOF textile composite to eliminate biological and chemical threats. J Am Chem Soc, 2021, 143: 16777,
CrossRef Google scholar
[35]
Ma K, Islamoglu T, Chen Z, Li P, Wasson MC, Chen Y, Wang Y, Peterson GW, Xin JH, Farha OK. Scalable and template-free aqueous synthesis of zirconium-based metal-organic framework coating on textile fiber. J Am Chem Soc, 2019, 141: 15626,
CrossRef Google scholar
[36]
Yan B, Huang S, Ren Y, Zhou M, Yu Y, Xu B, Cui L, Wang Q, Wang P. HRP-catalyzed grafting of MXene@PGA to silk fibers for visualization of dual-driven heating smart textile. Int J Biol Macromol, 2023, 226: 1141,
CrossRef Google scholar
[37]
Guo Z, Zeng G, Cui K, Chen A. Toxicity of environmental nanosilver: mechanism and assessment. Environ Chem Lett, 2019, 17: 319,
CrossRef Google scholar
[38]
Chong Y, Ge C, Yang Z, Garate JA, Gu Z, Weber JK, Liu J, Zhou R. Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano, 2015, 9: 5713,
CrossRef Google scholar
[39]
Rahim MA, Kristufek SL, Pan S, Richardson JJ, Caruso F. Phenolic building blocks for the assembly of functional materials. Angew Chem Int Ed, 2019, 58: 1904,
CrossRef Google scholar
[40]
Xu LQ, Neoh K-G, Kang E-T. Natural polyphenols as versatile platforms for material engineering and surface functionalization. Prog Polym Sci, 2018, 87: 165,
CrossRef Google scholar
[41]
Wang T, Zhao J, Yang Z, Xiong L, Li L, Gu Z, Li Y. Polyphenolic sunscreens for photoprotection. Green Chem, 2022, 24: 3605,
CrossRef Google scholar
[42]
Xu Y, Hu J, Hu J, Cheng Y, Chen X, Gu Z, Li Y. Bioinspired polydopamine hydrogels: strategies and applications. Prog Polym Sci, 2023, 146,
CrossRef Google scholar
[43]
Yang P, Bai W, Zou Y, Zhang X, Yang Y, Duan G, Wu J, Xu Y, Li Y. A melanin-inspired robust aerogel for multifunctional water remediation. Mater Horiz, 2023, 10: 1020,
CrossRef Google scholar
[44]
Yang L, Zhang X, Zhang J, Hu J, Zhang T, Gu Z, Li Y. Synthetic melanin hair dye. Acta Polym Sin, 2024, 55: 192
[45]
Zhang H, Zhang J, Peng X, Li Z, Bai W, Wang T, Gu Z, Li Y. Smart internal bio-glues. Adv Sci, 2022, 9: 2203587,
CrossRef Google scholar
[46]
Yuan T, Wang T, Zhang J, Liu P, Xu J, Gu Z, Xu J, Li Y. Robust and multifunctional nanoparticles assembled from natural polyphenols and metformin for efficient spinal cord regeneration. ACS Nano, 2023, 17: 18562,
CrossRef Google scholar
[47]
Guo L, Yang Z-Y, Tang R-C, Yuan H-B. Grape seed proanthocyanidins: novel coloring, flame-retardant, and antibacterial agents for silk. ACS Sustain Chem Eng, 2020, 8: 5966,
CrossRef Google scholar
[48]
Cheng T-H, Liu Z-J, Yang J-Y, Huang Y-Z, Tang R-C, Qiao Y-F. Extraction of functional dyes from tea stem waste in alkaline medium and their application for simultaneous coloration and flame retardant and bioactive functionalization of silk. ACS Sustain Chem Eng, 2019, 7: 18405,
CrossRef Google scholar
[49]
Gong J, Wang F, Ren Y, Li Z, Zhang J, Li Q. Preparation of biomass pigments and dyeing based on bioconversion. J Clean Prod, 2018, 182: 301,
CrossRef Google scholar
[50]
Yang Z, Zhang J, Liu H, Hu J, Wang X, Bai W, Zhang W, Yang Y, Gu Z, Li Y. A bioinspired strategy toward UV absorption enhancement of melanin-like polymers for sun protection. CCS Chem, 2023, 5: 2389,
CrossRef Google scholar
[51]
Yuan T, Wang T, Zhang J, Shi S, Gu Z, Li Y, Xu J. Procyanidins boost the neuroprotective effect of minocycline for intracerebral haemorrhage. Adv Funct Mater, 2023, 33: 2303379,
CrossRef Google scholar
[52]
Cao H, Yang L, Tian R, Wu H, Gu Z, Li Y. Versatile polyphenolic platforms in regulating cell biology. Chem Soc Rev, 2022, 51: 4175,
CrossRef Google scholar
[53]
Yang Y, Yang L, Yang F, Bai W, Zhang X, Li H, Duan G, Xu Y, Li Y. A bioinspired antibacterial and photothermal membrane for stable and durable clean water remediation. Mater Horiz, 2023, 10: 268,
CrossRef Google scholar
[54]
Yang P, Wang T, Zhang J, Zhang H, Bai W, Duan G, Zhang W, Wu J, Gu Z, Li Y. Manipulating the antioxidative capacity of melanin-like nanoparticles by involving condensation polymerization. Sci China Chem, 2023, 66: 1520,
CrossRef Google scholar
[55]
Zhang H, Huang C, Zhang J, Wang C, Wang T, Shi S, Gu Z, Li Y. Synthetic fungal melanin nanoparticles with excellent antioxidative property. Giant, 2022, 12,
CrossRef Google scholar
[56]
Fu Y, Yang L, Zhang J, Hu J, Duan G, Liu X, Li Y, Gu Z. Polydopamine antibacterial materials. Mater Horiz, 2021, 8: 1618,
CrossRef Google scholar
[57]
Tong Q, Xiao Y, Yi Z, Chen X, Jiang X, Li X. Polyphenolic condensation assembly enabled biocompatible, antioxidative, and light-colored tea sunscreen formulations with broadband UV protection. Green Chem, 2023, 25: 4387,
CrossRef Google scholar
[58]
Cao H, Zhu J, Zhang J, Yang L, Guo X, Tian R, Wu H, Li Y, Gu Z. In situ fabrication of robust polyphenolic hydrogels for skin protection and repair. Chem, Mater, 2023, 35: 2191,
CrossRef Google scholar
[59]
Hong S, Na YS, Choi S, Song IT, Kim WY, Lee H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater, 2012, 22: 4711,
CrossRef Google scholar
[60]
Fan Q, Yang Z, Li Y, Cheng Y, Li Y. Polycatechol mediated small interfering RNA delivery for the treatment of ulcerative colitis. Adv Funct Mater, 2021, 31: 2101646,
CrossRef Google scholar
[61]
Zhuk I, Jariwala F, Attygalle AB, Wu Y, Libera MR, Sukhishvili SA. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano, 2014, 8: 7733,
CrossRef Google scholar
[62]
Yan H, Li L, Wang Z, Wang Y, Guo M, Shi X, Yeh J-M, Zhang P. Mussel-inspired conducting copolymer with aniline tetramer as intelligent biological adhesive for bone tissue engineering. ACS Biomater Sci Eng, 2020, 6: 634,
CrossRef Google scholar
[63]
Prampolini G, d'Ischia M, Ferretti A. The phenoxyl group-modulated interplay of cation–π and σ-type interactions in the alkali metal series. Phys Chem Chem Phys, 2020, 22: 27105,
CrossRef Google scholar
[64]
Zhang X, Li Z, Yang P, Duan G, Liu X, Gu Z, Li Y. Polyphenol scaffolds in tissue engineering. Mater Horiz, 2021, 8: 145,
CrossRef Google scholar
[65]
Hong S, Yang K, Kang B, Lee C, Song IT, Byun E, Park KI, Cho S-W, Lee H. Hyaluronic acid catechol: a biopolymer exhibiting a pH-dependent adhesive or cohesive property for human neural stem cell engineering. Adv Funct Mater, 2013, 23: 1774,
CrossRef Google scholar
[66]
Lee HA, Park E, Lee H. Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST. Adv Mater, 2020, 32: 1907505,
CrossRef Google scholar
[67]
Cao W, Zhou X, McCallum NC, Hu Z, Ni QZ, Kapoor U, Heil CM, Cay KS, Zand T, Mantanona AJ, et al.. Unraveling the structure and function of melanin through synthesis. J Am Chem Soc, 2021, 143: 2622,
CrossRef Google scholar
[68]
Hider RC, Liu ZD, Khodr HH. Metal chelation of polyphenols. Methods in enzymology, 2001 Academic Press 190-203
[69]
Wang Z, Zou Y, Li Y, Cheng Y. Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics. Small, 2020, 16: 1907042,
CrossRef Google scholar
[70]
Wang XH, Yang L, Yang P, Guo WC, Zhang QP, Liu XH, Li YW. Metal ion-promoted fabrication of melanin-like poly(L-DOPA) nanoparticles for photothermal actuation. Sci China Chem, 2020, 63: 1295,
CrossRef Google scholar
[71]
Zhang X, Yan Y, Li N, Yang P, Yang Y, Duan G, Wang X, Xu Y, Li Y. A robust and 3D-printed solar evaporator based on naturally occurring molecules. Sci Bull, 2023, 68: 203,
CrossRef Google scholar
[72]
Rahim MA, Björnmalm M, Suma T, Faria M, Ju Y, Kempe K, Müllner M, Ejima H, Stickland AD, Caruso F. Metal-phenolic supramolecular gelation. Angew Chem Int Ed, 2016, 55: 13803,
CrossRef Google scholar
[73]
Kim S, Gim T, Kang SM. Versatile, tannic acid-mediated surface PEGylation for marine antifouling applications. ACS Appl Mater Interfaces, 2015, 7: 6412,
CrossRef Google scholar
[74]
Li N, Zou Y, Zhang X, Jin Z, Yang Y, Yang L, Duan G, Xu Y, Li Y. Degradable and recyclable solar desalination membranes based on naturally occurring building blocks. Chem Mater, 2022, 34: 10399,
CrossRef Google scholar
[75]
Yu S, Li G, Liu R, Ma D, Xue W. Dendritic Fe3O4@Poly(dopamine)@PAMAM nanocomposite as controllable NO-releasing material: a synergistic photothermal and NO antibacterial study. Adv Funct Mater, 2018, 28: 1707440,
CrossRef Google scholar
[76]
Choi CKK, Chiu YTE, Zhuo X, Liu Y, Pak CY, Liu X, Tse Y-LS, Wang J, Choi CHJ. Dopamine-mediated assembly of citrate-capped plasmonic nanoparticles into stable core-shell nanoworms for intracellular applications. ACS Nano, 2019, 13: 5864,
CrossRef Google scholar
[77]
Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318: 426,
CrossRef Google scholar
[78]
Nguyen HL, Bechtold T. Thermal stability of natural dye lakes from Canadian goldenrod and onion peel as sustainable pigments. J Clean Prod, 2021, 315,
CrossRef Google scholar
[79]
Chakraborty L, Pandit P, Roy Maulik S. Acacia auriculiformis: a natural dye used for simultaneous coloration and functional finishing on textiles. J Clean Prod, 2020, 245,
CrossRef Google scholar
[80]
Pakdel E, Xie W, Wang J, Kashi S, Sharp J, Zhang Q, Varley RJ, Sun L, Wang X. Superhydrophobic natural melanin-coated cotton with excellent UV protection and personal thermal management functionality. Chem Eng J, 2022, 433,
CrossRef Google scholar
[81]
Yang H, Zhou J, Duan Z, Lu B, Deng B, Xu W. Preparation of structural color on cotton fabric with high color fastness through multiple hydrogen bonds between polyphenol hydroxyl and lactam. ACS Appl Mater Interfaces, 2022, 14: 3244,
CrossRef Google scholar
[82]
Zhong Q-Z, Richardson JJ, He A, Zheng T, Lafleur RPM, Li J, Qiu W-Z, Furtado D, Pan S, Xu Z-K, et al.. Engineered coatings via the assembly of amino-Quinone networks. Angew Chem Int Ed, 2021, 60: 2346,
CrossRef Google scholar
[83]
Yang S-J, Zou L-Y, Liu C, Zhong Q, Ma Z-Y, Yang J, Ji J, Müller-Buschbaum P, Xu Z-K. Codeposition of levodopa and polyethyleneimine: reaction mechanism and coating construction. ACS Appl Mater Interfaces, 2020, 12: 54094,
CrossRef Google scholar
[84]
Cheng W, Liu WJ, Wang P, Zhou M, Cui L, Wang Q, Yu YY. Multifunctional coating of cotton fabric via the assembly of amino-quinone networks with polyamine biomacromolecules and dopamine quinone. Int J Biol Macromol, 2022, 213: 96,
CrossRef Google scholar
[85]
Geng H, Zhong Q-Z, Li J, Lin Z, Cui J, Caruso F, Hao J. Metal ion-directed functional metal-phenolic materials. Chem Rev, 2022, 122: 11432,
CrossRef Google scholar
[86]
Yun G, Pan S, Wang TY, Guo J, Richardson JJ, Caruso F. Synthesis of metal nanoparticles in metal-phenolic networks: catalytic and antimicrobial applications of coated textiles. Adv Healthc Mater, 2018, 7: 1700934,
CrossRef Google scholar
[87]
Joshi S, Kathuria H, Verma S, Valiyaveettil S. Functional catechol-metal polymers via interfacial polymerization for applications in water purification. ACS Appl Mater Interfaces, 2020, 12: 19044,
CrossRef Google scholar
[88]
Han X, Gong X. In situ, one-pot method to prepare robust superamphiphobic cotton fabrics for high buoyancy and good antifouling. ACS Appl Mater Interfaces, 2021, 13: 31298,
CrossRef Google scholar
[89]
Zahid M, Heredia-Guerrero JA, Athanassiou A, Bayer IS. Robust water repellent treatment for woven cotton fabrics with eco-friendly polymers. Chem Eng J, 2017, 319: 321,
CrossRef Google scholar
[90]
Liu Y, Liu Z, Liu Y, Hu H, Li Y, Yan P, Yu B, Zhou F. One-step modification of fabrics with bioinspired polydopamine@octadecylamine nanocapsules for robust and healable self-cleaning performance. Small, 2015, 11: 426,
CrossRef Google scholar
[91]
Guo F, Wen Q, Peng Y, Guo Z. Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation. J Mater Chem A, 2017, 5: 21866,
CrossRef Google scholar
[92]
Kulkarni S, Xia Z, Yu S, Kiratitanavit W, Morgan AB, Kumar J, Mosurkal R, Nagarajan R. Bio-based flame-retardant coatings based on the synergistic combination of tannic acid and phytic acid for nylon-cotton blends. ACS Appl Mater Interfaces, 2021, 13: 61620,
CrossRef Google scholar
[93]
Horrocks AR. Horrocks AR, Price D. Textiles. Fire retardant materials, 2001 Woodhead Publishing 128-181,
CrossRef Google scholar
[94]
Zhang W, Yang Z-Y, Tang R-C, Guan J-P, Qiao Y-F. Application of tannic acid and ferrous ion complex as eco-friendly flame retardant and antibacterial agents for silk. J Clean Prod, 2020, 250,
CrossRef Google scholar
[95]
Yang Z, Guo W, Yang P, Hu J, Duan G, Liu X, Gu Z, Li Y. Metal-phenolic network green flame retardants. Polymer, 2021, 221,
CrossRef Google scholar
[96]
Yang L, Zou Y, Xia W, Li H, He X, Zhou Y, Liu X, Zhang C, Li Y. Tea stain-inspired solar energy harvesting polyphenolic nanocoatings with tunable absorption spectra. Nano Res, 2020, 14: 969,
CrossRef Google scholar
[97]
Zhang X, Shiu BC, Li T-T, Liu X, Ren H-T, Wang Y, Lou C-W, Lin J-H. Synergistic work of photo-thermoelectric and hydroelectric effects of hierarchical structure photo-thermoelectric textile for solar energy harvesting and solar steam generation simultaneously. Chem Eng J, 2021, 426,
CrossRef Google scholar
[98]
Liang B, Jia E, Yuan X, Zhang G, Su Z. Salt-responsive polyzwitterion brushes conjugated with silver nanoparticles: Preparation and dual antimicrobial/release properties. Chem Eng J, 2020, 401,
CrossRef Google scholar
[99]
Li N, Kang G, Liu H, Qiu W, Wang Q, Liu L, Wang X, Yu J, Li F, Wu D. Fabrication of eco-friendly and efficient flame retardant modified cellulose with antibacterial property. J Colloid Interface Sci, 2022, 618: 462,
CrossRef Google scholar
[100]
Zan X, Kozlov M, McCarthy TJ, Su Z. Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(l-lactic acid). Biomacromol, 2010, 11: 1082,
CrossRef Google scholar
[101]
Xing L, Wang B, Zhang Y, Yang H, Zhu X, Chen G, Xing T. Universal fabrication of superhydrophobic and UV resistant cotton fabric with polyphenols. Cellulose, 2021, 28: 11645,
CrossRef Google scholar
[102]
Cheng W, Yu Y, Liu W, Wang X, Zhou M, Xu B, Wang P, Wang Q. Self-assembly amino-quinone network coatings onto polyester fabric via single-sided spraying of natural polyphenols and polyethyleneimine for highly efficient moisture conducting and bacteriostatic properties. Appl Surf Sci, 2022, 606,
CrossRef Google scholar
[103]
Liu W, Cheng W, Zhou M, Xu B, Wang P, Wang Q, Yu Y. Construction of multifunctional UV-resistant, antibacterial and photothermal cotton fabric via silver/melanin-like nanoparticles. Cellulose, 2022, 29: 7477,
CrossRef Google scholar
[104]
Yan B, Bao X, Gao Y, Zhou M, Yu Y, Xu B, Cui L, Wang Q, Wang P. Antioxidative MXene@GA-decorated textile assisted by metal ion for efficient electromagnetic interference shielding, dual-driven heating, and infrared thermal camouflage. Adv Fiber Mater, 2023, 5: 2080,
CrossRef Google scholar
[105]
Fu C, Xu X, Yin G-Z, Xu B, Li P, Ai B, Zhai Z, Gao F, Zhai J, Wang D-Y. Surface engineering for cellulose as a boosted layer-by-layer assembly: excellent flame retardancy and improved durability with introduction of bio-based “molecular glue”. Appl Surf Sci, 2022, 585,
CrossRef Google scholar
[106]
Zhou J, Duan Z, Lu B, Liu X, Yang H, Deng B. Preparation of structural colors on cotton fabrics with hydrophobicity and high color fastness through chemical bonds between polyphenolic hydroxyl groups and polysiloxanes. Cellulose, 2023, 30: 6639,
CrossRef Google scholar
[107]
Gu S, Yang L, Huang W, Bu Y, Chen D, Huang J, Zhou Y, Xu W. Fabrication of hydrophobic cotton fabrics inspired by polyphenol chemistry. Cellulose, 2017, 24: 2635,
CrossRef Google scholar
[108]
Zhao Z, Zhang Q, Song X, Chen J, Ding Y, Wu H, Guo S. Versatile melanin-like coatings with hierarchical structure toward personal thermal management, anti-icing/deicing, and UV protection. ACS Appl Mater Interfaces, 2023, 15: 3522,
CrossRef Google scholar
[109]
Ou J, Ma J, Wang F, Li W, Fang X, Lei S, Amirfazli A. Unexpected superhydrophobic polydopamine on cotton fabric. Prog Org Coat, 2020, 147,
CrossRef Google scholar
[110]
Wang B, Ma Y, Ge H, Luo J, Peng B, Deng Z. Design and synthesis of self-healable superhydrophobic coatings for oil/water separation. Langmuir, 2020, 36: 15309,
CrossRef Google scholar
[111]
Miao S, Xiong Z, Zhang J, Wu Y, Gong X. Polydopamine/SiO2 hybrid structured superamphiphobic fabrics with good photothermal behavior. Langmuir, 2022, 38: 9431,
CrossRef Google scholar
[112]
Zhao Y, Meng Y, Yu P, Hu X, Su J, Han J. Modified reduced graphene oxide-LDH/WPU nanohybrid coated nylon 6 fabrics for durable photothermal conversion performance. Appl Surf Sci, 2023, 622,
CrossRef Google scholar
[113]
Chien H-W, Chiu T-H. Stable N-halamine on polydopamine coating for high antimicrobial efficiency. Eur Polym J, 2020, 130,
CrossRef Google scholar
[114]
Zhou Q, Wu W, Zhou S, Xing T, Sun G, Chen G. Polydopamine-induced growth of mineralized γ-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance. Chem Eng J, 2020, 382,
CrossRef Google scholar
[115]
Li Q, Zhang S, Mahmood K, Jin Y, Huang C, Huang Z, Zhang S, Ming W. Fabrication of multifunctional PET fabrics with flame retardant, antibacterial and superhydrophobic properties. Prog Org Coat, 2021, 157,
CrossRef Google scholar
[116]
Gu J, Yan X, Qi D, Xie R, Yang X, Li Y, Li J. Fabrication of durable coatings for cotton fabrics with flame retardant, antibacterial. Fluorine-free superhydrophobic and self-cleaning properties. Cellulose, 2023, 30: 591,
CrossRef Google scholar
[117]
Wang W, Wang J, Wang X, Wang S, Liu X, Qi P, Li H, Sun J, Tang W, Zhang S, et al.. Improving flame retardancy and self-cleaning performance of cotton fabric via a coating of in-situ growing layered double hydroxides (LDHs) on polydopamine. Prog Org Coat, 2020, 149,
CrossRef Google scholar
[118]
Hu Q, Wang W, Ma T, Zhang C, Kuang J, Wang R. Anti-UV and hydrophobic dual-functional coating fabrication for flame retardant polyester fabrics by surface-initiated PET RAFT technique. Eur Polym J, 2022, 173,
CrossRef Google scholar
[119]
Liu W, Yu Y, Cheng W, Zhou M, Cui L, Wang P, Wang Q. Melanin-like nanoparticles loaded with Ag NPs for rapid photothermal sterilization and daily protection of textiles. Colloids Surf B Biointerfaces, 2022, 219,
CrossRef Google scholar
[120]
Xu Y, Hu J, Zhang X, Yuan D, Duan G, Li Y. Robust and multifunctional natural polyphenolic composites for water remediation. Mater Horiz, 2022, 9: 2496,
CrossRef Google scholar
[121]
Li Y, Fan J, Wang R, Shou W, Wang L, Liu Y. 3D tree-shaped hierarchical flax fabric for highly efficient solar steam generation. J Mater Chem A, 2021, 9: 2248,
CrossRef Google scholar
[122]
Chong W, Meng R, Liu Z, Liu Q, Hu J, Zhu B, Macharia DK, Chen Z, Zhang L. Superhydrophilic polydopamine-modified carbon-fiber membrane with rapid seawater-transferring ability for constructing efficient hanging-model evaporator. Adv Fiber Mater, 2023, 5: 1063,
CrossRef Google scholar
[123]
Wang Z, Ji S, Zhang J, Liu Q, He F, Peng S, Li Y. Tannic acid encountering ovalbumin: a green and mild strategy for superhydrophilic and underwater superoleophobic modification of various hydrophobic membranes for oil/water separation. J Mater Chem A, 2018, 6: 13959,
CrossRef Google scholar
[124]
Zhou Q, Yan B, Xing T, Chen G. Fabrication of superhydrophobic caffeic acid/Fe@cotton fabric and its oil-water separation performance. Carbohydr Polym, 2019, 203: 1,
CrossRef Google scholar
[125]
Li B, Wu L, Li L, Seeger S, Zhang J, Wang A. Superwetting double-layer polyester materials for effective removal of both insoluble oils and soluble dyes in water. ACS Appl Mater Interfaces, 2014, 6: 11581,
CrossRef Google scholar
[126]
Kim HS, Sun X, Lee J-H, Kim H-W, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev, 2019, 146: 209,
CrossRef Google scholar
[127]
Li S, Chen A, Chen Y, Yang Y, Zhang Q, Luo S, Ye M, Zhou Y, An Y, Huang W, et al.. Lotus leaf inspired antiadhesive and antibacterial gauze for enhanced infected dermal wound regeneration. Chem Eng J, 2020, 402,
CrossRef Google scholar
[128]
Liu W, Yu Y, Cheng W, Wang X, Zhou M, Xu B, Wang P, Wang Q. D-A structured high-performance photothermal/photodynamic thionin-synthetic melanin nanoparticles for rapid bactericidal and wound healing effects. Adv Healthc Mater, 2023, 12: 2203303,
CrossRef Google scholar
[129]
Tat T, Chen G, Zhao X, Zhou Y, Xu J, Chen J. Smart textiles for healthcare and sustainability. ACS Nano, 2022, 16: 13301,
CrossRef Google scholar
[130]
Wu J, Wang M, Dong L, Zhang Y, Shi J, Ohyama M, Kohsaka Y, Zhu C, Morikawa H. Highly integrated, breathable, metalized phase change fibrous membranes based on hierarchical coaxial fiber structure for multimodal personal thermal management. Chem Eng J, 2023, 465,
CrossRef Google scholar
[131]
Li K, Li H-N, Xue Y-R, Yang H-C, Zhang C, Xu Z-K. Photothermal Janus fabrics enabling persistent directional sweat-wicking in personal wet-thermal management. J Colloid Interface Sci, 2023, 651: 841,
CrossRef Google scholar
[132]
Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic textiles for wearable point-of-care systems. Chem Rev, 2022, 122: 3259,
CrossRef Google scholar
[133]
Liu L, Li R, Liu F, Huang L, Liu W, Wang J, Wu Z, Reddy N, Cui W, Jiang Q. Highly elastic and strain sensing corn protein electrospun fibers for monitoring of wound healing. ACS Nano, 2023, 17: 9600,
CrossRef Google scholar
[134]
Sun G, Wang P, Jiang Y, Sun H, Liu T, Li G, Yu W, Meng C, Guo S. Bioinspired flexible, breathable, waterproof and self-cleaning iontronic tactile sensors for special underwater sensing applications. Nano Energy, 2023, 110,
CrossRef Google scholar
[135]
Li H, Li N, Yang Y, Zhang L, Bai W, Zhang X, Xu Y, Li Y. Self-sterilization and self-powered real-time respiratory monitoring of reusable masks engineered by bioinspired coatings. Nano Energy, 2023, 115,
CrossRef Google scholar
[136]
Tian E, Liu J, Gao Y, Mo J, Zhang S, Bai X, Liu K, Xu G, Liu K. Artificial polydopamine interface for high-performance ambient particulate matter removal at large velocity. Carbon Neutralization, 2023, 2: 245,
CrossRef Google scholar
[137]
Zhao Z, Song X, Zhang Y, Zeng B, Wu H, Guo S. Biomineralization-inspired copper sulfide decorated aramid textiles via in situ anchoring toward versatile wearable thermal management. Small, 2023,
CrossRef Google scholar
[138]
Xiong J, Yang Z, Wu B, Li M, Min X. CuS-enhanced light-absorbing washable solar evaporator based on polydopamine-cotton fabric for efficient water purification. Int J Biol Macromol, 2022, 46: 16979
[139]
Wang M, Peng M, Zhu J, Li Y-D, Zeng J-B. Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation. Carbohydr Polym, 2020, 244,
CrossRef Google scholar
[140]
Hu D-D, Li Y-D, Weng Y, Peng H-Q, Zeng J-B. Mussel inspired stable underwater superoleophobic cotton fabric combined with carbon nanotubes for efficient oil/water separation and dye adsorption. Appl Surf Sci, 2023, 631,
CrossRef Google scholar
[141]
Xiong F, Wei S, Sheng H, Wu S, Liu Z, Cui W, Sun Y, Wu Y, Li B, Xuan H, et al.. Three-layer core-shell structure of polypyrrole/polydopamine/poly(l-lactide) nanofibers for wound healing application. Int J Biol Macromol, 2022, 222: 1948,
CrossRef Google scholar
[142]
Jin F, Lv D, Shen W, Song W, Tan R. High performance flexible and wearable strain sensor based on rGO and PANI modified Lycra cotton e-textile. Sens Actuator A Phys, 2022, 337,
CrossRef Google scholar
[143]
Yu Z, Deng C, Seidi F, Yong Q, Lou Z, Meng L, Liu J, Huang C, Liu Y, Wu W, et al.. Air-permeable and flexible multifunctional cellulose-based textiles for bio-protection, thermal heating conversion, and electromagnetic interference shielding. J Mater Chem A, 2022, 10: 17452,
CrossRef Google scholar
[144]
Li Y, Li H, Wu J, Jia X, Zhang Z, Yang J, Miao X, Feng L, Song H. Facile recycling of waste fabrics for preparing multifunctional photothermal protective materials. ACS Sustain Chem Eng, 2023, 11: 10566,
CrossRef Google scholar
[145]
Wang X, Hu T, Hu B, Liu Y, Wang Y, He Y, Li Y, Cai K, Zhang X, Guo J. Imparting reusable and SARS-CoV-2 inhibition properties to standard masks through metal-organic nanocoatings. J Hazard Mater, 2022, 431,
CrossRef Google scholar
[146]
Lee SY, Kim JT, Chathuranga K, Lee JS, Park SW, Park WH. Tannic-acid-enriched poly(vinyl alcohol) nanofibrous membrane as a UV-shielding and antibacterial face mask filter material. ACS Appl Mater Interfaces, 2023, 15: 20435,
CrossRef Google scholar
[147]
Zou Y, Chen X, Yang P, Liang G, Yang Y, Gu Z, Li Y. Regulating the absorption spectrum of polydopamine. Sci Adv, 2020, 6,
CrossRef Google scholar
[148]
Bai W, Yang P, Liu H, Zou Y, Wang X, Yang Y, Gu Z, Li Y. Boosting the optical absorption of melanin-like polymers. Macromolecules, 2022, 55: 3493,
CrossRef Google scholar
[149]
Bai W, Yang P, Zhang H, Wang T, Yang Y, Zhang X, Duan G, Xu Y, Li Y. Polycondensation-involved melanin-like polymers for enhanced solar energy utilization. Macromolecules, 2023, 56: 4566,
CrossRef Google scholar
[150]
Hu X, Li Z, Yang Z, Zhu F, Zhao W, Duan G, Li Y. Fabrication of functional polycatechol nanoparticles. ACS Macro Lett, 2022, 11: 251,
CrossRef Google scholar
Funding
National Natural Science Foundation of China(82022070)

Accesses

Citations

Detail

Sections
Recommended

/