Dry Fiber-Based Electrodes for Electrophysiology Applications
Ladan Eskandarian, Elmira Pajootan, Amirali Toossi, Hani E. Naguib
Advanced Fiber Materials ›› 2023, Vol. 5 ›› Issue (3) : 819-846.
Dry Fiber-Based Electrodes for Electrophysiology Applications
Long-term continuous health care monitoring, using wearable technologies has received considerable interest due to the significant contribution of wearables to the diagnosis of diseases and identification of health conditions. Fibers have been widely applied in human societies due to their unique advantages, including stretchability, small diameters, high dynamic bending elasticity, high length-to-width ratios, and mechanical strength. A new generation of fiber-based electrodes is being integrated into smart textiles and wearables for continuous long-term biosignal monitoring. Dry fiber-based electrodes are breathable, flexible, and durable, unlike conventional disposable gel electrodes, which are difficult to employ for long-term applications because of skin irritation and allergic responses caused by their moist and adhesive interface with the skin. In this review, we provide a concise summary of recent breakthroughs in the design, and manufacturing of dry fiber-based electrodes for electrophysiology applications, with a particular emphasis on applications in electrocardiography, electromyography, and electroencephalography. Focusing on numerous features of electroactive fiber materials, fiber processing, electrode fabrication, scaled-up manufacturing, standardization of testing and performance criteria, we discuss current limitations and provide an outlook for the future development of this field.
/
〈 |
|
〉 |