N-Halamine Functionalized Electrospun Poly(Vinyl Alcohol-co-Ethylene) Nanofibrous Membranes with Rechargeable Antibacterial Activity for Bioprotective Applications
Mingguang Liang, Fei Wang, Mei Liu, Jianyong Yu, Yang Si, Bin Ding
Advanced Fiber Materials ›› 2019, Vol. 1 ›› Issue (2) : 126-136.
N-Halamine Functionalized Electrospun Poly(Vinyl Alcohol-co-Ethylene) Nanofibrous Membranes with Rechargeable Antibacterial Activity for Bioprotective Applications
Developing bioprotective materials with bactericidal activity is of great significance since it can effectively keep healthcare workers from infection by emerging infectious diseases; however, this is still a big challenge. Herein, we fabricate a novel rechargeable N-halamine antibacterial material by functionalizing electrospun poly(vinyl alcohol-co-ethylene) (EVOH) nanofibers with dimethylol-5,5-dimethylhydantoin (DMDMH). The premise of the design is that the N-halamine compound, DMDMH, can be covalently grafted on the nanofibers, endowing the EVOH nanofibrous membranes (ENM) with rechargeable and durable bactericidal activity. The as-prepared DMDMH functionalized ENM (EDNM) render rechargeable chlorination capacity (> 2000 ppm), high inactivation efficacy against bacteria (> 99.9999% within 3 min), high filtration efficiency (> 99.5%) under low air resistance, and robust mechanical properties, which are due to the synergistic effect of the unique characters of N-halamines and electrospun nanofibrous architecture. The successful synthesis of the N-halamine antibacterial membranes can serve as a functional layer of protective equipment that capable of inactivating and intercepting pathogenic bioaerosols, providing new ways into the development of new-generation antibacterial bioprotective materials.
/
〈 |
|
〉 |