Urban growth prediction along Shared Socioeconomic Pathways (SSPs) for future flood exposure risk assessment: a cross-continental analysis of coastal cities

Felix Bachofer , Zhiyuan Wang , Juliane Huth , Christina Eisfelder , Andrea Reimuth , Claudia Kuenzer

Anthropocene Coasts ›› 2026, Vol. 9 ›› Issue (1) : 1

PDF
Anthropocene Coasts ›› 2026, Vol. 9 ›› Issue (1) :1 DOI: 10.1007/s44218-025-00109-6
Research Article
research-article

Urban growth prediction along Shared Socioeconomic Pathways (SSPs) for future flood exposure risk assessment: a cross-continental analysis of coastal cities

Author information +
History +
PDF

Abstract

Climate change remains a defining challenge of the twenty-first century, profoundly impacting ecosystems, economies, and human settlements. Among its consequences, the intensification of flood risks in coastal cities poses a critical threat to sustainable development, particularly in the Global South. This study bridges climate change-induced flooding scenarios with urban growth modelling, integrating Shared Socioeconomic Pathways (SSPs) into the SLEUTH model to simulate future urban trajectories and assess flood exposure under varying climate and socioeconomic conditions. Leveraging Earth observation information products, flood hazard scenarios based on Representative Concentration Pathways (RCPs) and high-resolution (30 m) urban growth projections, this study evaluates coastal, fluvial, and pluvial flood exposure for nine coastal agglomerations with diverse socioeconomic and environmental contexts. Urban growth projections under SSP1/RCP2.6, SSP2/RCP4.5, and SSP5/RCP8.5 scenarios reveal significant variability in urban expansion rates, with four cities projected to expand by over 50% by 2050. Flood exposure assessments for the target year 2050 reveal nuanced spatial and scenario-dependent patterns across all flood types: Surabaya (Indonesia) faces severe coastal flooding (up to 83 km2 under SSP5/RCP8.5), while Guayaquil (Ecuador) and Ho Chi Minh City (Vietnam) experience extensive risks of fluvial flood exposure, with over 37% of newly developed areas inundated in Guayaquil. Notably, the SSP2/RCP4.5 “Middle of the Road” scenario yields the lowest flood exposure in Khulna (Bangladesh) and Surabaya, whereas SSP1/RCP2.6 and SSP5/RCP8.5 project 30% to over 70% higher exposure in these cities. Disproportionate exposure to inundation in newly urbanized areas, particularly for Dar es Salaam (Tanzania) and Guayaquil, underscores potential risks associated with rapid and uninformed urbanization into flood prone regions. These findings emphasize the dual role of high radiative forcing climate scenarios and socioeconomic pathways in shaping flood exposure and associated risks, advocating for integrated strategies that combine climate mitigation with proactive, scenario-based urban planning.

Keywords

Urban growth modelling / Shared socioeconomic pathways (SSPs) / Flood exposure / SLEUTH / Coastal urban areas / Climate change impacts

Cite this article

Download citation ▾
Felix Bachofer, Zhiyuan Wang, Juliane Huth, Christina Eisfelder, Andrea Reimuth, Claudia Kuenzer. Urban growth prediction along Shared Socioeconomic Pathways (SSPs) for future flood exposure risk assessment: a cross-continental analysis of coastal cities. Anthropocene Coasts, 2026, 9(1): 1 DOI:10.1007/s44218-025-00109-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Airbus (2019) Copernicus DEM Copernicus Digital Elevation Model - Product Handbook. Contract No.: AO/1–9422/18/I-LG

[2]

Alam I, Nahar K, Morshed MM. Measuring urban expansion pattern using spatial matrices in Khulna City, Bangladesh. Heliyon, 2023, 9(2): e13193

[3]

Alfieri L, Burek P, Dutra E, Krzeminski B, Muraro D, Thielen J, Pappenberger F. GloFAS – global ensemble streamflow forecasting and flood early warning. Hydrol Earth Syst Sci, 2013, 17(31161-1175

[4]

Barragán JM, de Andrés M. Analysis and trends of the world's coastal cities and agglomerations. Ocean Coast Manage, 2015, 114: 11-20

[5]

Bates P. Uneven burden of urban flooding. Nat Sustain, 2022, 6(1): 9-10

[6]

Bernard A, Long N, Becker M, Khan J, Fanchette S. Bangladesh's vulnerability to cyclonic coastal flooding. Nat Hazards Earth Syst Sci, 2022, 22(3): 729-751

[7]

Center for International Earth Science Information Network CIESIN, Columbia University, Information Technology Outreach Services ITOS, University of Georgia (2013) Global Roads Open Access Data Set, Version 1 (gROADSv1). In: (SEDAC) NSDaAC, editor. Palisades, NY, USA

[8]

Chaudhuri G, Clarke KC. The SLEUTH land use change model: a review. Int J Environ Resources Res, 2013, 1(1): 88-105

[9]

Chen G, Li X, Liu X, Chen Y, Liang X, Leng J, Xu X, Liao W, Qiu Y, Wu Q, Huang K. Global projections of future urban land expansion under shared socioeconomic pathways. Nat Commun, 2020, 11(1): 537

[10]

Chen S, Huang Q, Muttarak R, Fang J, Liu T, He C, Liu Z, Zhu L. Updating global urbanization projections under the shared socioeconomic pathways. Sci Data, 2022, 9(1137

[11]

Clarke KC. Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F. Land Use Change Modeling with SLEUTH: Improving Calibration with a Genetic Algorithm. Geomatic Approaches for Modeling Land Change Scenarios, 2018, Cham, Springer International Publishing139-161

[12]

Clarke KC, Hoppen S, Gaydos L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay Area. Environ Plann B Plann des, 1997, 24(2): 247-261

[13]

Clarke KC, Johnson JM (2020) Calibrating SLEUTH with big data: projecting California's land use to 2100. Computers, Environment and Urban Systems 83. https://doi.org/10.1016/j.compenvurbsys.2020.101525

[14]

Clarke KC, Hoppen S, Gaydos LJ (1996) Methods and techniques for rigorous calibration of a cellular automaton model of urban growth. Third International Conference/Workshop on Integrating GIS and Environmental Modeling: 1319–1328.

[15]

Clarke KC, Dietzel C, Goldstein NC, editors. (2004) A Decade of SLEUTHing: Lessons Learned from Applications of a Cellular Automaton Land Use Change Model

[16]

Copernicus Sentinel data (2020). Copernicus Sentinel 1 and 2. In: Agency pbES, editor.

[17]

Corbane C, Pesaresi M, Kemper T, Politis P, Florczyk AJ, Syrris V, Melchiorri M, Sabo F, Soille P. Automated global delineation of human settlements from 40 years of Landsat satellite data archives. Big Earth Data, 2019, 3(2): 140-169

[18]

Couasnon A, Scussolini P, Tran TVT, Eilander D, Muis S, Wang H, Keesom J, Dullaart J, Xuan Y, Nguyen HQ, Winsemius HC, Ward PJ. A Flood Risk Framework Capturing the Seasonality of and Dependence Between Rainfall and Sea Levels—An Application to Ho Chi Minh City. Vietnam. Water Resources Research, 2022, 58(2): e2021WR030002

[19]

Crespo Cuaresma J. Income projections for climate change research: a framework based on human capital dynamics. Glob Environ Change, 2017, 42: 226-236

[20]

Dasgupta S, Laplante B, Murray S, Wheeler D. Exposure of developing countries to sea-level rise and storm surges. Clim Change, 2010, 106(4567-579

[21]

Dellink R, Chateau J, Lanzi E, Magné B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob Environ Change, 2017, 42: 200-214

[22]

Dietzel C, Clarke KC. Toward Optimal Calibration of the SLEUTH Land Use Change Model. Transact GIS, 2007, 11(1): 29-45

[23]

Dodman D, Hayward B, Pelling M, Broto VC, Chow W, Chu E, Dawson R, Khirfan L, McPhearson T, Prakash A, Zheng Y, Ziervogel G, et al.. Pörtner H-O, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, et al.. Cities, Settlements and Key Infrastructure. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change: Climate Change 2022 – Impacts, Adaptation and Vulnerability, 2023, Cambridge, UK and New York, NY, USA, Cambridge University Press9071040

[24]

Edmonds DA, Caldwell RL, Brondizio ES, Siani SMO. Coastal flooding will disproportionately impact people on river deltas. Nat Commun, 2020, 11(1): 4741

[25]

European Space Agency and Airbus (2022) Copernicus DEM. In: Agency ES, editor.

[26]

Eyelade D, Clarke KC, Ijagbone I. Impacts of spatiotemporal resolution and tiling on SLEUTH model calibration and forecasting for urban areas with unregulated growth patterns. Int J Geogr Inf Sci, 2022, 36(51037-1058

[27]

Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev, 2016, 9(5): 1937-1958

[28]

Fathom (2022a) Fathom - Global 3.0 Methods: In brief

[29]

Fathom (2022b) Fathom launches new Global Flood Map – Fathom-Global 3.0 Bristol, UKAvailable from: https://www.fathom.global/newsroom/fathom-launches-global-flood-map/. Accessed 23.08.2023

[30]

Fathom (2023) Fathom Global Flood Map Specification Bristol, UKAvailable from: https://www.fathom.global/product/global-flood-map/. Accessed 30.06.2023

[31]

Feng H-H, Liu H-P, Y. Scenario prediction and analysis of urban growth using SLEUTH model. Pedosphere, 2012, 22(2): 206-216

[32]

Florczyk AJ, Corbane C, Ehrlich D, Freire S, Kemper T, Maffenini L, Melchiorri M, Pesaresi M, Politis P, Schiavina M, Sabo F, Zanchetta L (2019) GHSL Data Package 2019. European Commission, Joint Research Centre (JRC). Contract No.: JRC 117104

[33]

Fricko O, Havlik P, Rogelj J, Klimont Z, Gusti M, Johnson N, Kolp P, Strubegger M, Valin H, Amann M, Ermolieva T, Forsell N, Herrero M, Heyes C, Kindermann G, Krey V, McCollum DL, Obersteiner M, Pachauri S, Rao S, Schmid E, Schoepp W, Riahi K. The marker quantification of the shared socioeconomic pathway 2: a middle-of-the-road scenario for the 21st century. Glob Environ Change, 2017, 42: 251-267

[34]

Gao J, O'Neill B. Data-driven spatial modeling of long-term urban land development potential for global environmental change impact assessment: the SELECT model. Environ Model Softw, 2019

[35]

Gao J, O'Neill BC. Mapping global urban land for the 21st century with data-driven simulations and shared socioeconomic pathways. Nat Commun, 2020, 11(1): 2302

[36]

Gilbert KM, Shi Y. Urban growth monitoring and prediction using remote sensing urban monitoring indices approach and integrating CA-Markov model: a case study of Lagos City, Nigeria. Sustainability, 2023, 16(130

[37]

Glavovic BC, Dawson R, Chow W, Garschagen M, Haasnoot M, Singh C, Thomas A, et al.. Pörtner H-O, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, et al.. Cross-Chapter Paper 2: Cities and Settlements by the Sea. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change: Climate Change 2022 – Impacts, Adaptation and Vulnerability, 2022, Cambridge, UK and New York, NY, USA, Cambridge University Press2163-2194

[38]

Goncalves TM, Zhong X, Ziggah YY, Dwamena BY. Simulating urban growth using cellular automata approach (SLEUTH)-a case study of Praia City, Cabo Verde. IEEE Access, 2019, 7: 156430-156442

[39]

Gong P, Liu H, Zhang M, Li C, Wang J, Huang H, Clinton N, Ji L, Li W, Bai Y, Chen B, Xu B, Zhu Z, Yuan C, Ping Suen H, Guo J, Xu N, Li W, Zhao Y, Yang J, Yu C, Wang X, Fu H, Yu L, Dronova I, Hui F, Cheng X, Shi X, Xiao F, Liu Q, Song L. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci Bull, 2019, 64(6): 370-373

[40]

Gong P, Li X, Wang J, Bai Y, Chen B, Hu T, Liu X, Xu B, Yang J, Zhang W, Zhou Y. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sen Environ, 2020, 236: 111510

[41]

Haer T, Husby TG, Botzen WJW, Aerts JCJH. The safe development paradox: an agent-based model for flood risk under climate change in the European Union. Global Environ Change, 2020, 60: 102009

[42]

Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J. Future flood losses in major coastal cities. Nat Clim Change, 2013, 3(9): 802-806

[43]

Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 1982, 143(129-36

[44]

Hanson S, Nicholls R, Ranger N, Hallegatte S, Corfee-Morlot J, Herweijer C, Chateau J. A global ranking of port cities with high exposure to climate extremes. Clim Change, 2010, 104(1): 89-111

[45]

Haque A, Nicholls RJ. Nicholls RJ, Hutton CW, Adger WN, Hanson SE, Rahman MM, Salehin M. Floods and the Ganges-Brahmaputra-Meghna Delta. Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis, 2018, Cham, Springer International Publishing147159

[46]

Harb M, Garschagen M, Cotti D, Krätzschmar E, Baccouche H, Ben Khaled K, Bellert F, Chebil B, Ben Fredj A, Ayed S, Shekhar H, Hagenlocher M. Integrating data-driven and participatory modeling to simulate future urban growth scenarios: findings from Monastir, Tunisia. Urban Sci, 2020, 4(1): 10

[47]

Hawker L, Uhe P, Paulo L, Sosa J, Savage J, Sampson C, Neal J. A 30 m global map of elevation with forests and buildings removed. Environ Res Lett, 2022, 17(2024016

[48]

He W, Li X, Zhou Y, Shi Z, Yu G, Hu T, Wang Y, Huang J, Bai T, Sun Z, Liu X, Gong P. Global urban fractional changes at a 1 km resolution throughout 2100 under eight scenarios of shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs). Earth Syst Sci Data, 2023, 15(83623-3639

[49]

Hemmati M, Ellingwood BR, Mahmoud HN. The role of urban growth in resilience of communities under flood risk. Earths Future, 2020, 8(3): e2019EF001382

[50]

Horn A. Reviewing implications of urban growth management and spatial governance in the Global South. Plann Pract Res, 2020, 35(4452-465

[51]

Huang X, Song Y, Yang J, Wang W, Ren H, Dong M, Feng Y, Yin H, Li J. Toward accurate mapping of 30-m time-series global impervious surface area (GISA). Int J Appl Earth Observ Geoinform, 2022, 109: 102787

[52]

IFRC. DREF Operation - Final Report Ecuador Floods. International Federation of Red Cross and Red Crescent Societies (IFRC), 2023, 03(05): 2023

[53]

IIASA (2018) SSP Database (Shared Socioeconomic Pathways) - Version 2.0. In: (IIASA) IIfASA, editor

[54]

IPCC. Climate change 2022 – impacts, adaptation and vulnerability: working group II contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change, 2023, Cambridge, Cambridge University Press

[55]

Jamshed A, Patel C, Puriya A, Iqbal N, Rana IA, McMillan JM, Pandey R, Altaf S, Mehmood RT, Ub S. Flood resilience assessment from the perspective of urban (in)formality in Surat, 2023, India, Implications for sustainable development. Nat Hazards

[56]

Jantz CA, Goetz SJ, Shelley MK. Using the sleuth urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington Metropolitan Area. Environ Plann B Plann des, 2016, 31(2251-271

[57]

Jiang L, O’Neill BC. Global urbanization projections for the shared socioeconomic pathways. Glob Environ Change, 2017, 42: 193-199

[58]

Jibhakate SM, Timbadiya PV, Patel PL. Multiparameter flood hazard, socioeconomic vulnerability and flood risk assessment for densely populated coastal city. J Environ Manage, 2023, 344: 118405

[59]

Jones B, O’Neill BC. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ Res Lett, 2016, 11(8084003

[60]

Kc S, Lutz W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob Environ Change, 2017, 42: 181-192

[61]

Kebede AS, Nicholls RJ. Exposure and vulnerability to climate extremes: population and asset exposure to coastal flooding in Dar es Salaam, Tanzania. Reg Environ Change, 2011, 12(181-94

[62]

Koehler J, Kuenzer C. Forecasting spatio-temporal dynamics on the land surface using earth observation data—a review. Remote Sensing, 2020, 12(21): 3513

[63]

Kriegler E, Bauer N, Popp A, Humpenöder F, Leimbach M, Strefler J, Baumstark L, Bodirsky BL, Hilaire J, Klein D, Mouratiadou I, Weindl I, Bertram C, Dietrich J-P, Luderer G, Pehl M, Pietzcker R, Piontek F, Lotze-Campen H, Biewald A, Bonsch M, Giannousakis A, Kreidenweis U, Müller C, Rolinski S, Schultes A, Schwanitz J, Stevanovic M, Calvin K, Emmerling J, Fujimori S, Edenhofer O. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob Environ Change, 2017, 42: 297-315

[64]

Kumar V, Agrawal S (2022) Urban modelling and forecasting of landuse using SLEUTH model. Int J Environ Sci Technol (Tehran):1–20. https://doi.org/10.1007/s13762-022-04331-4

[65]

Kumar V, Sharma K, Caloiero T, Mehta D, Singh K (2023). Comprehensive overview of flood modeling approaches: a review of recent advances. Hydrology, 10(7). https://doi.org/10.3390/hydrology10070141

[66]

Kuo HF, Tsou KW (2017) Modeling and simulation of the future impacts of urban land use change on the natural environment by sleuth and cluster analysis. Sustainability 10(2). https://doi.org/10.3390/su10010072

[67]

Lee DR, Sallee GT. A method of measuring shape. Geogr Rev, 1970, 60(4555-563

[68]

Leimbach M, Kriegler E, Roming N, Schwanitz J. Future growth patterns of world regions – a GDP scenario approach. Glob Environ Change, 2017, 42: 215-225

[69]

Li X, Gong P. Urban growth models: progress and perspective. Sci Bull, 2016, 61(21): 1637-1650

[70]

Liu X, Liang X, Li X, Xu X, Ou J, Chen Y, Li S, Wang S, Pei F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc Urban Plann, 2017, 168: 94-116

[71]

Liu X, Wei M, Li Z, Zeng J (2022) Multi-scenario simulation of urban growth boundaries with an ESP-FLUS model: a case study of the min delta region, China. Ecological Indicators. 135. https://doi.org/10.1016/j.ecolind.2022.108538

[72]

Mahtta R, Fragkias M, Güneralp B, Mahendra A, Reba M, Wentz EA, Seto KC (2022) Urban land expansion: the role of population and economic growth for 300+ cities. npj Urban Sustainability 2(1). https://doi.org/10.1038/s42949-022-00048-y

[73]

Marconcini M, Metz-Marconcini A, Üreyen S, Palacios-Lopez D, Hanke W, Bachofer F, Zeidler J, Esch T, Gorelick N, Kakarla A, Strano E (2019) Outlining where humans live -- The World Settlement Footprint. arXiv e-prints 1910.12707.

[74]

Marconcini M, Metz-Marconcini A, Ureyen S, Palacios-Lopez D, Hanke W, Bachofer F, Zeidler J, Esch T, Gorelick N, Kakarla A, Paganini M, Strano E. Outlining where humans live, the World Settlement Footprint 2015. Sci Data, 2020, 7(1): 242

[75]

Marconcini M, Metz- Marconcini A, Esch T, Gorelick N. Understanding current trends in global urbanisation - the World Settlement Footprint suite. Gi_forum, 2021, 1: 33-38

[76]

Mård J, Di Baldassarre G, Mazzoleni M. Nighttime light data reveal how flood protection shapes human proximity to rivers. Sci Adv, 2018, 4(8eaar5779

[77]

Merkens J-L, Reimann L, Hinkel J, Vafeidis AT. Gridded population projections for the coastal zone under the shared socioeconomic pathways. Glob Planet Change, 2016, 145: 57-66

[78]

Milanes CB, Martínez-González MB, Moreno-Gómez J, Saltarín J A, Suarez A, Padilla-Llano SE, Vasquez A, Lavell A, Zielinski S (2021) Multiple Hazards and Governance Model in the Barranquilla Metropolitan Area, Colombia. Sustainability 13(5). https://doi.org/10.3390/su13052669

[79]

Musa SI, Hashim M, Reba MNM. A review of geospatial-based urban growth models and modelling initiatives. Geocarto Int, 2016, 32(8813-833

[80]

Nardi F, Annis A, Di Baldassarre G, Vivoni ER, Grimaldi S. Gfplain250m, a global high-resolution dataset of Earth's floodplains. Sci Data, 2019, 6: 180309

[81]

Neal J, Hawker L, Savage J, Durand M, Bates P, Sampson C (2021) Estimating river channel bathymetry in large scale flood inundation models. Water Resour Res. 57(5). https://doi.org/10.1029/2020wr028301

[82]

Nicholls RJ, Cazenave A. Sea-level rise and its impact on coastal zones. Science, 2010, 328(5985): 1517-1520

[83]

Nicholls RJ, Lincke D, Hinkel J, Brown S, Vafeidis AT, Meyssignac B, Hanson SE, Merkens J-L, Fang J. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat Clim Chang, 2021, 11(4338-342

[84]

Nicholls RJ, Hanson S, Herweijer C, Patmore N, Hallegatte S, Corfee-Morlot J, Château J, Muir-Wood R (2008) Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes: Exposure Estimates. Report No.: 19970900.

[85]

Nkwunonwo UC, Whitworth M, Baily B. Review article: a review and critical analysis of the efforts towards urban flood risk management in the Lagos region of Nigeria. Nat Hazards Earth Syst Sci, 2016, 16(2): 349-369

[86]

O'Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J-F, Lowe J, Meehl GA, Moss R, Riahi K, Sanderson BM. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev, 2016, 9(9): 3461-3482

[87]

Onilude OO, Vaz E. Urban sprawl and growth prediction for Lagos using GlobeLand30 data and cellular automata model. Sci, 2021, 3(2): 23

[88]

Park SH, Goo JM, Jo C-H. Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol, 2004, 5(111-18

[89]

Pelckmans I, Belliard J-P, Dominguez-Granda LE, Slobbe C, Temmerman S, Gourgue O. Mangrove ecosystem properties regulate high water levels in a river delta. Nat Hazards Earth Syst Sci, 2023, 23(9): 3169-3183

[90]

Pirani A, Fuglestvedt JS, Byers E, O’Neill B, Riahi K, Lee J-., Marotzke J, Rose SK, Schaeffer R, Tebaldi C (2024) Scenarios in IPCC assessments: lessons from AR6 and opportunities for AR7. npj Climate Action, 3(1). https://doi.org/10.1038/s44168-023-00082-1

[91]

Pontius RG, Schneider LC. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ, 2001, 85(1): 239-248

[92]

Rafiee R, Mahiny AS, Khorasani N, Darvishsefat AA, Danekar A. Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM). Cities, 2009, 26(1): 19-26

[93]

Randolph GF, Storper M. Is urbanisation in the Global South fundamentally different? Comparative global urban analysis for the 21st century. Urban Stud, 2022, 60(1): 3-25

[94]

Reguero BG, Losada IJ, Diaz-Simal P, Mendez FJ, Beck MW. Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS ONE, 2015, 10(7): e0133409

[95]

Reimuth A, Hagenlocher M, Yang LE, Katzschner A, Harb M, Garschagen M (2023) Urban growth modeling for the assessment of future climate and disaster risks: approaches, gaps and needs. Environ Res Lett. 19(1). https://doi.org/10.1088/1748-9326/ad1082

[96]

Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, Kc S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Change, 2017, 42: 153-168

[97]

Rosenzweig C, Solecki W, Romero-Lankao P, Mehrotra S, Dhakal S, Bowman T, Ibrahim SA (2018).Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network: Summary for City Leaders. In: Rosenzweig C, Romero-Lankao P, Mehrotra S, Dhakal S, Ali Ibrahim S, Solecki WD, editors. Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network. Cambridge: Cambridge University Press; p. xvii-xlii

[98]

Saxena A, Jat MK (2020) Land suitability and urban growth modeling: Development of SLEUTH-Suitability. Comput Environ Urban Syst. 81. https://doi.org/10.1016/j.compenvurbsys.2020.101475

[99]

Schumann, G., Bates, P.D., Apel, H. and Aronica, G.T. (2018). Global Flood Hazard Mapping, Modeling, and Forecasting. In Global Flood Hazard (eds G.J.-P. Schumann, P.D. Bates, H. Apel and G.T. Aronica). https://doi.org/10.1002/9781119217886.ch14

[100]

Sett D, Trinh T, Wasim T, Ortiz-Vargas A, Nguyen DGC, Büche K, Assmann A, Nguyen HKL, Walz Y, Souvignet M, Bachofer F, Vu TB, Garschagen M, Hagenlocher M. Advancing understanding of the complex nature of flood risks to inform comprehensive risk management: Findings from an urban region in Central Vietnam. Int J Disaster Risk Reduct, 2024, 110: 104652

[101]

Silverman BW (1986). Density estimation for statistics and data analysis. 1. publ. ed. London [u.a.]: Chapman and Hall

[102]

Srichaichana J, Trisurat Y, Ongsomwang S. Land use and land cover scenarios for optimum water yield and sediment retention ecosystem services in Klong U-tapao watershed, Songkhla, Thailand. Sustainability, 2019, 11(102895

[103]

Strauss BH, Kulp SA, Rasmussen DJ, Levermann A (2021) Unprecedented threats to cities from multi-century sea level rise. Environ Res Lett. 16(11). https://doi.org/10.1088/1748-9326/ac2e6b

[104]

Sun Q, Fang J, Dang X, Xu K, Fang Y, Li X, Liu M. Multi-scenario urban flood risk assessment by integrating future land use change models and hydrodynamic models. Nat Hazards Earth Syst Sci, 2022, 22(113815-3829

[105]

Susetyo C, Yusuf L, Setiawan RP. Spatial planning concept for flood prevention in the Kedurus River watershed. Open Geosci, 2022, 14(11238-1249

[106]

Tate E, Rahman MA, Emrich CT, Sampson CC. Flood exposure and social vulnerability in the United States. Nat Hazards, 2021, 106(1): 435-457

[107]

Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc, 2012, 93(4): 485-498

[108]

Tellman B, Sullivan JA, Kuhn C, Kettner AJ, Doyle CS, Brakenridge GR, Erickson TA, Slayback DA. Satellite imaging reveals increased proportion of population exposed to floods. Nature, 2021, 596(7870): 80-86

[109]

Terama E, Clarke E, Rounsevell MDA, Fronzek S, Carter TR. Modelling population structure in the context of urban land use change in Europe. Reg Environ Change, 2017, 19(3): 667-677

[110]

UNEP-WCMC, IUCN (2023) Protected Planet: The World Database on Protected Areas (WDPA). In: UNEP-WCMC and IUCN, editor. Cambridge, UK

[111]

UNFCCC (2015) Adoption of the Paris Agreement. Report No. FCCC/CP/2015/L.9/Rev.1. http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf. Accessed 19.03.2025.

[112]

van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK. The representative concentration pathways: an overview. Clim Change, 2011, 109(1–2): 5-31

[113]

van Vuuren DP, Kriegler E, O’Neill BC, Ebi KL, Riahi K, Carter TR, Edmonds J, Hallegatte S, Kram T, Mathur R, Winkler H. A new scenario framework for climate change research: scenario matrix architecture. Clim Chang, 2013, 122(3): 373-386

[114]

van Vuuren DP, Stehfest E, Gernaat DEHJ, Doelman JC, van den Berg M, Harmsen M, de Boer HS, Bouwman LF, Daioglou V, Edelenbosch OY, Girod B, Kram T, Lassaletta L, Lucas PL, van Meijl H, Müller C, van Ruijven BJ, van der Sluis S, Tabeau A. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob Environ Chang, 2017, 42: 237-250

[115]

Varquez ACG, Darmanto N, Kawano N, Takakuwa S, Kanda M, Xin Z. Representative urban growing scenarios for future climate models. J Japan Society Civil Eng Ser B1 (Hydraulic Engineering), 2017, 73(4): I_103-I_108

[116]

Verburg PH, Overmars KP. Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc Ecol, 2009, 24(9): 1167-1181

[117]

Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Mastura SSA. Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manage, 2002, 30(3): 391-405

[118]

Verburg PH, de Nijs TCM, Ritsema van Eck J, Visser H, de Jong K. A method to analyse neighbourhood characteristics of land use patterns. Comput Environ Urban Syst, 2004, 28(6): 667-690

[119]

Wang Z, Bachofer F, Koehler J, Huth J, Hoeser T, Marconcini M, Esch T, Kuenzer C. Spatial modelling and prediction with the spatio-temporal matrix: a study on predicting future settlement growth. Land, 2022, 11(8): 1174

[120]

Wang S, Zhang HJ, Wang TT, Hossain S. Simulating runoff changes and evaluating under climate change using CMIP6 data and the optimal SWAT model: a case study. Sci Rep, 2024, 14(123228

[121]

Wing OEJ, Bates PD, Sampson CC, Smith AM, Johnson KA, Erickson TA. Validation of a 30 m resolution flood hazard model of the conterminous United States. Water Resour Res, 2017, 53(97968-7986

[122]

Winsemius H, Ward P, Luo T (2015) Aqueduct Global Flood Risk Maps Washington, DC, USA: World Resources Institute. Available from: https://www.wri.org/data/aqueduct-global-flood-analyzer. Accessed 28.08.2023

[123]

Wolff C, Nikoletopoulos T, Hinkel J, Vafeidis AT. Future urban development exacerbates coastal exposure in the Mediterranean. Sci Rep, 2020, 10(1): 14420

[124]

Wolff C, Bonatz H, Vafeidis AT. Setback zones can effectively reduce exposure to sea-level rise in Europe. Sci Rep, 2023, 13(15515

[125]

World Bank (2014) Turn Down the Heat: Confronting the New Climate Normal. Washington, DC: World Bank. Contract No.: 92704 v3.

[126]

WRI Aqueduct (2023) Aqueduct Global Flood Analyzer: World Resources Institute (WRI). Available from: https://www.wri.org/applications/aqueduct/floods/. Accessed 28.12.2023

[127]

Wu X, Hu Y, He HS, Bu R, Onsted J, Xi F. Performance evaluation of the SLEUTH model in the Shenyang Metropolitan Area of Northeastern China. Environ Model Assess, 2008, 14(2221-230

[128]

Yeh AGO, Li X, Xia C (2021).Cellular Automata Modeling for Urban and Regional Planning. In: Shi W, Goodchild MF, Batty M, Kwan M-P, Zhang A, editors. Urban Informatics. Singapore: Springer Singapore; p. 865–883

[129]

Zhou Y, Varquez ACG, Kanda M. High-resolution global urban growth projection based on multiple applications of the SLEUTH urban growth model. Sci Data, 2019, 6(134

RIGHTS & PERMISSIONS

The Author(s)

PDF

41

Accesses

0

Citation

Detail

Sections
Recommended

/