Hydrogel of biocompatible carbomers as matrix for elimination of neural tissue defects

G. A. Fomina , R. F. Masgutov , V. G. Shtyrlin , Yu. l. Zyavkina , Yu. A. Chelyshev

Genes & Cells ›› 2007, Vol. 2 ›› Issue (4) : 63 -67.

PDF
Genes & Cells ›› 2007, Vol. 2 ›› Issue (4) : 63 -67. DOI: 10.23868/gc139209
Original Study Articles
research-article

Hydrogel of biocompatible carbomers as matrix for elimination of neural tissue defects

Author information +
History +
PDF

Abstract

Short-term effects of biocompatible materials were examined on functional posttraumatlc recovery of rat sciatic nerve and mice spinal cord. Transected nerve regeneration across 5 mm gaps within silicone tubes filled with synthetic hydrogels of sodium salts of 3%polyacrylic acid (PAA] or 1,8% Carbopol® 971P NF or 8% sodium salt of carboxymethylcellulose were investigated. Functional recovery was assessed using the sciatic functional index until 30 days after nerve injury. Supportive influence of PAA was shown on motor and sensory function recovery of nerve. At the 30th the survival ofL5 DRG neurons Increased in group with Carbopol by 13,3%, in case of PAA by 30,3% to compare with negative control group [plain tube without matrix). By day 30 after the operation the number of middle size neurons in group with PAA exceeds by 10,8% in comparison with Carbopol group. In these conditions the number of myelinated fibers exceeded by 10,3%. Addition of patented composition M4 consisting of amino acids and microelements to the PAA or Carbopol hydrogels improved the sensory reactions from the hind paw skin. On the model of complete transection of mice spinal cord at T9 it has been shown Increase of locomotor repair assessed in Basso, Beathie, Bresnahan (1995) open field rating scale under the influence of mixture of Carbopol and M4 composition. The received results testify that synthetic biocompatible materials PAA and Carbopol differently influence regeneration in the central and peripheral nervous system. Thus, investigated scaffolds as suitable conduit could be useful for Improving regeneration of the peripheral nerve or spinal cord after an injury.

Keywords

nerve regeneration / spinal cord / hydrogel

Cite this article

Download citation ▾
G. A. Fomina, R. F. Masgutov, V. G. Shtyrlin, Yu. l. Zyavkina, Yu. A. Chelyshev. Hydrogel of biocompatible carbomers as matrix for elimination of neural tissue defects. Genes & Cells, 2007, 2(4): 63-67 DOI:10.23868/gc139209

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schmidt С.Е, Leach J.B. Neural tissue engineering: strategies for repair and regeneration. Ann. Rev. Biomed. 2003; 5: 293-347.

[2]

Novikova L.N, Novikov L.N, Kellerth J.O. Biopolymers and biodegradable smart implants fortissue regeneration after spinal cord injury. Curr. Opin. Neurol. 2003 Dec; 16(6): 711-5.

[3]

Nomura H., Tator C.H, Shoichet M.S. Bioengineered strategies for spinal cord repair. J. Neurotrauma. 2006 Mar-Apr; 23[3-4): 496-507.

[4]

Bellamkonda R.V. Peripheral nerve regeneration: An opinion on channels, scaffolds and anisotropy. Biomaterials 2006; 27: 3515-8.

[5]

Yoshii S., Oka M. Peripheral nerve regeneration along collagen filaments. Brain Research 2001; 888:158-62.

[6]

Choi B.H., HanS.G., KimS.H. et al. Autologous fibrin glue in peripheral nerve regeneration in vivo. Microsurgery 2005; 25(6): 495-9.

[7]

Nakayama K., Takakuda K., Koyama Y. et al. Enhancement of peripheral nerve regeneration using bioabsorbable polymer tubes packed with fibrin gel. Artificial Organs 2007; 31[7):500-8.

[8]

Phillips J.B., King V.R., Ward Z. et al. Fluid shear in viscous fibronectin gels allows aggregation of fibrous materials for CNS tissue engineering. Biomaterials 2004 Jun; 25(14): 2769-79.

[9]

Evans G.R.D., Brandt K., Widmer M.S. et al. In vivo evaluation of poly[L— lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 1999; 20: 1109-15.

[10]

Belkas J.S., Munro С.А., ShoichetsM.S. et al. Long-term in vivo biomechanicalpropertiesand biocompatibility of poly(2-hydroxyethylmethacrylate-co-methyl methacrylate) nerve conduits. Biomaterials 2005; 2(6): 1741-9.

[11]

Yu T.T., Shoichet M.S. Guided cell adhesion and outgrowth in peptide-modified channels for neuraltissue engineering. Biomaterials 2005; 26:1507-14.

[12]

Yang Y., De Laporte L, Rives C.B. et al. Neurotrophin releasing single and multiple lumen nerve conduits. Controlled Release 2005; 104: 433-6.

[13]

Piotrowicz A., Shoichet M.S. Nerve guidance channels as drug delivery vehicles. Biomaterials 2006 Mar; 27(9): 2018-27.

[14]

Verreck G., Chun I., Li Y. et al. Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials 2005; 26:1307-15.

[15]

Masgutov R., Raginov I., Fomina G. et al. Stimulation of the rat's sciatic nerve regeneration by local treatment with xymedon®. Cell Mol. Neurobiology 2006; 26(7-8): 1411-9.

[16]

Осипова E.A. Водорастворимые комплексообразующие полимеры. Соросовский образовательный журнал 1999; 8: 40-7.

[17]

Lomas R.J., Jennings L.M., Fisher J. ey al. Effects of a per acetic acid disinfection protocol on the biocompatibility and biomechanical properties of human patellar tendon allografts. Cell Tissue Bank 2004; 5(3): 149-60.

[18]

Hosmani A.H. Carbopol and its pharmaceutical significance: A review. Pharmainfo.net. 2006 Feb; 17; 1-19.

[19]

Масгутов Р.Ф., Фомина Г.А., Рагинов И.С. и др. Стимуляция ксимедоном регенерации энтубулированного нерва. Морфологические ведомости 2005; 1[2):22-4.

[20]

Масгутов Р.Ф., Фомина Г.А., Рагинов И.С. и др. Пути влияния ксимедона на рост аксонов in vitro и in vivo. Морфологические ведомости 2005; 3(4): 66-9.

[21]

Залялютдинова Л.Н., Захаров А.В., Штырлин В.Г. и др. Композиция аминокислот с микроэлементами и кальцием, обладающая противоопухолевой, антйдепрессивной и противоаритмической активностью. Патент № 2151596 С1 RLI от 27.06.2000. № 94104169/14. МКИ7А61К31/ 197,33/24. Бюллетень изобретений и открытий 2000; 18.

[22]

Штырлин В.Г., Хафизьянова Р.Х., Залялютдинова Л.Н. и др. Композиция аминокислот с микроэлементами, обладающая противоопухолевой и антигипоксической активностью. Патент № 2125874 С1 RLI от 10.02.1999. № 94025068/14. МКИ6А61К31/195.9/08. Бюллетень изобретений и открытий 1999; 4: 474.

[23]

Siemion Z., Kluczyk A., Cebrat М. The peptide molecular links between the central nervous and the immune systems. Amino Acids 2005; 29:161-76.

[24]

Inserra M.M. Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery 1998; 18(2): 119-24.

[25]

Greulich M., Riecker K., Lanz U.et al. Evaluation of digital nerve sensitivity following reconstruction. Chir. Forum Exp. Klin. Forsch 1977; Apr: 90-4.

[26]

Henken D., Battisti W., Chesselet M. Expression of bb-preprotachykinin mRNA and tachykinins in rat dorsal root ganglion cells following peripheral or central axotomy. Neuroscience 1990; 39(3): 733-42.

[27]

Lawson S. Morphological and biochemical cell types of sensory neurons. Sensory Neurons: Diversity, Development, Plasticity, Oxford Univ. New York 1992; 27-59.

[28]

Basso D.M., Beattie M.S., Bresnahan J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. Neurotrauma 1995; 12(1): 1-21.

[29]

Ellis-Behnke R.G., Liang Y.-X., You S.-W. et al. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl. Acad. Soi. USA 2006; 103(13): 5054-9.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/