Comparative analysis of osteogenic potential of multipotent mesenchymal stromal cells derived from oral mucosa and bone marrow

V. L Zorin , A. I Zorina , I. I Eremin , I. Y Bozo 1 , E. V Solovieva , N. V Hromova , P. B Kopnin

Genes & Cells ›› 2014, Vol. 9 ›› Issue (1) : 50 -57.

PDF
Genes & Cells ›› 2014, Vol. 9 ›› Issue (1) : 50 -57. DOI: 10.23868/gc120253
Articles
research-article

Comparative analysis of osteogenic potential of multipotent mesenchymal stromal cells derived from oral mucosa and bone marrow

Author information +
History +
PDF

Abstract

This article is focused on comparative analysis of osteogenic potential of multipotent mesenchymal stromal cells (MMSC) derived from different sources: gingival mucosa and bone marrow. MMSC immunophenotype, proliferation potential and osteogenic differentiation capacity were investigated in this work. Ability of MMSC adhesion to p-tricalcium phosphate was also examined. Osteoinductive potential of tissue-engineered bone grafts (MMSCs + p-tricalcium phosphate) was shown in experiments carried out on NOD-SCID mice in heterotopic bone formation test. Results of this research demonstrated that both type of MMSC had similar surface markers and osteogenic differentiation capacity. However MMSC derived from gingival mucosa were characterized by higher proliferative activity and higher adhesion level to p-tricalcium phosphate. Taking into consideration that MMSC could be obtained easier from gingival mucosa, this source of stem cells is probably the most promising for tissue engineering of bone grafts for stomatology and maxillofacial surgery (at least in case of investigated scaffold).

Keywords

multipotent mesenchymal stromal cells / gingival mucosa / bone marrow / p-tricalcium phosphate / heterotopic bone formation test

Cite this article

Download citation ▾
V. L Zorin, A. I Zorina, I. I Eremin, I. Y Bozo 1, E. V Solovieva, N. V Hromova, P. B Kopnin. Comparative analysis of osteogenic potential of multipotent mesenchymal stromal cells derived from oral mucosa and bone marrow. Genes & Cells, 2014, 9(1): 50-57 DOI:10.23868/gc120253

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Кулаков Л.А., Робустова Т.Г., Неробеев Л.И., редакторы. Хирургическая стоматология и челюстно-лицевая хирургия. Национальное руководство. Москва: «ГЭОТАР-Медиа», 2010; 928 с.

[2]

Pihlstrom B., Michalowics B., Johnson N. Periodontal diseases. Lancet 2005; 366: 1809-20.

[3]

Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012; 40(5): 363-408.

[4]

Фриденштейн А.Я., Петракова К.В., Куралесова А.И. Клетки-предшественники для остеогенной и кроветворной тканей. Анализ гетеротропных трансплантатов костного мозга. Цитология 1968; 5: 557-67.

[5]

Zhang Q., Shi S., Liu Y. et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009; 183(12): 7787-98.

[6]

Mitrano T., Grob M., Carrion F. et al. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol. 2010, 81: 917-25.

[7]

Mostafa N., Uludag H., Varkey M., Dederich D. et al. In Vitro Osteogenic Induction of Human Gingival Fibroblasts For Bone Regeneration. The Open Dentistry Journal 2011; 5: 139-45.

[8]

Fournier B., Ferre F., Couty L., Lataillade J. et al. Multipotent progenitor cells in gingival connective tissue. Tissue Engineering: Part A 2010, 16(9): 2891-9.

[9]

Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-17.

[10]

Tang L, Li N, Xie H et al. Characterization of mesenchymal stem cells from human normal and hyperplastic gingiva. J Cell Physiol. 2011; 226(3): 832-42.

[11]

Bartold P., Shi S., Gronthos S. Stem cells and periodontal regeneration. Periodontol 2000. 2006; 40: 164-172.

[12]

Гололобов В.Г., Дулаев А.К., Деев Р.В. и д.р. Морфофункциональная организация, реактивность и регенерация костной ткани. СПб: 2006; 47 с.

[13]

Maximow A.A. Bindegewebe und blutbildende Gewebe. Hadn. d. mikr. Anat. herausg. von. W. Mollendorff. Berlin: Springer, 1927; 2: 232-84.

[14]

Данилов Р.К., Быков В.Л. Руководство по гистологии. В 2 т. Т I. - СПб.: СпецЛит; 2001.

[15]

Зорин В.Л., Копнин П.Б., Комлев В.С. и др. Изучение возможности применения мультипотентных мезенхимальных стро-мальных клеток, выделенных из десны человека, в составе тканеинженерного конструкта для восстановления костных тканей пародонта. VI Ежегодный Международный симпозиум. Актуальные вопросы генных и клеточных технологий. «Медицинские клеточные технологии в эстетической медицине и реконструктивной хирургии: возможности и тренды». Тезисы докладов. Клеточная трансплантология и тканевая инженерия 2013; VIIIC3): 28-9.

[16]

Walsh S., Jordan G.R., Jefferiss C. et al. High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis. Rheumatology (Oxford) 2001; 40: 74-83.

[17]

Leboy P.S., Beresford J.N., Devlin C. et al. Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J Cell Physiol 1991; 146: 370-8.

[18]

Caplan A.I. Mesenchymal stem cells. J Orthop. Res. 1991; 9(5): 641-50.

[19]

Pittenger M.F., Mackay A.M., Beck S.C. et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/