Smoking and anaesthesia: the pharmacological implications

B. P. Sweeney , M. Grayling

Regional Anesthesia and Acute Pain Management ›› 2011, Vol. 5 ›› Issue (4) : 52 -60.

PDF
Regional Anesthesia and Acute Pain Management ›› 2011, Vol. 5 ›› Issue (4) : 52 -60. DOI: 10.17816/RA36147
Articles
research-article

Smoking and anaesthesia: the pharmacological implications

Author information +
History +
PDF

Abstract

Cite this article

Download citation ▾
B. P. Sweeney, M. Grayling. Smoking and anaesthesia: the pharmacological implications. Regional Anesthesia and Acute Pain Management, 2011, 5(4): 52-60 DOI:10.17816/RA36147

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beckers S., Camu F. The anesthetic risk of tobacco smoking // Acta Anaesthesiologica Belgica. 1991; 42: 45-56.

[2]

Rodrigo C. The effects of cigarette smoking on anesthesia // Anesthesia Progress. 2000; 47: 143-150.

[3]

Benowitz N. L. Pharmacological aspects of cigarette smoking and nicotine // New England Journal of Medicine. 1988; 319: 1318-1330.

[4]

CDC: tobacco use among adults-United States // Morbidity and Mortality Weekly Report. 2005; 55: 1145-1148.

[5]

Available at: http://www.statistics.gov.uk/ssd/surveys/general-household-survey.asp

[6]

Hoffman D., Hoffman I., El-Bayoumy K. The less harmful cigarette: a controversial issue. A tribute to Ernest L. Wynder // Chemical Research in Toxicology. 2001; 14: 767-790.

[7]

Jamrozik K. Estimate of deaths attributable to passive smoking among UK adults: database analysis // British Medical Journal. 2005; 330: 812.

[8]

CDC: annual smoking attributable mortality, years of potential life lost and productivity losses-United States, 1997-2001 // Morbidity and Mortality Weekly Report. 2005; 54: 625-628.

[9]

Severson R. F., Snook M. E., Arrendale R. F., Chortyk O. T. Gas chromatographic quantitation of polynuclear aromatic hydrocarbons in tobacco smoke // Analytical Chemistry. 1976; 48: 1866-1872.

[10]

Schumacher J. N., Green C. R., Best F. W., Newell M. P Smoke composition. An extensive investigation of the water-soluble portion of cigarette smoke // Journal of Agricultural and Food Chemistry. 1977; 25: 310-320.

[11]

Wolf C. R., Mahmood A., Henderson C. J. et al. Modulation of the cytochrome P450 system as a mechanism of chemopro-tection // International Agency for Research on Cancer Scientific Publications. 1996; 139: 165-173.

[12]

Chang G. W. M., Kam P C. A. The physiological and pharmacological roles of cytochrome P450 isoenzymes // Anaesthesia. 1999; 54: 42-50.

[13]

Nelson D. R., Koymans L., Kamataki T. et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature // Pharmacogenetics. 1996; 6: 1-42.

[14]

Nebert D. W., Russell D. W. Clinical importance of the cytochromes P450 // Lancet. 2002; 360: 1155-1162.

[15]

Tanaka E. Clinically important pharmacokinetic drug-drug interactions: role of cytochrome P450 enzymes // Journal of Clinical Pharmacy and Therapeutics. 1998; 23: 403-416.

[16]

Conney A. H. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons // Cancer Research. 1982; 42: 4875-4917.

[17]

Kawajiri K., Watanabe J., Eguchi H. Genetic polymorphisms of drug-metabolising enzymes and lung cancer susceptibility / / Pharmacogenetics. 1995; 5: S70-73.

[18]

Yang C. S., Brady J. F., Hong J. Y. Dietary effects on cytochromes P450, xenobiotic metabolism and toxicity // FASEB Journal. 1992; 6: 737-744.

[19]

Park B. K., Kitteringham N. R., Pirmohamed M. et al. Relevance of induction of human drug metabolizing enzymes: pharmacological and toxicological implications // Clinical Pharmacology. 1996; 41: 477-491.

[20]

Park B. K., Breckenridge A. M. Clinical implications of enzyme induction and enzyme inhibition // Clinical Pharmacokinetics. 1981; 6: 1-24.

[21]

Jusko J. W. Influence of cigarette smoking on drug metabolism in man // Drug Metabolism Reviews. 1979; 9: 221-236.

[22]

Vistisen K., Loft S., Poulsen H. E. Cytochrome P4501A2 activity in man measured by caffeine metabolism: effect of smoking, broccoli and exercise // Advances in Experimental Medicine and Biology. 1991; 283: 407-411.

[23]

Meyer U. A. Overview of enzymes of drug metabolism // Journal of Pharmacokinetics and Biopharmaceutics. 1996; 24: 449-459.

[24]

Lee B. I., Benowitz N. L., Jacob P. Cigarette abstinence, nicotine gum and theophylline disposition // Annals of Internal Medicine. 1987; 106: 553-559.

[25]

Santos J. L., Calabranes J. A., Almoquera I. et al. Clinical implications of determination of plasma haloperidol levels // Acta Psychiatrica Scandinavica. 1989; 79: 348-354.

[26]

Kalow B. K., Tank B. K. Use of caffeine metabolite ratios to explore CYP1A2 and xanthine oxidase activities // Clinical Pharmacology and Therapeutics. 1992; 50: 508-519.

[27]

Zevin S., Benowitz N. L. Drug interactions with tobacco smoking // Clinical Pharmacokinetics. 1999; 36: 425-438.

[28]

Zhou J., Zhang J., Xie W. Xenobiotic nuclear-receptormediated regulation of UDP-glucuronosyl-transferase // Current Drug Metabolism. 2005; 6: 289-298.

[29]

Mackenzie P L., Miners J. O., McKinnon R. A. Polymorphisms in UDP glucuronosyl transferase genes: functional consequences and clinical relevance // Clinical Chemistry and Laboratory Medicine. 2000; 38: 889-892.

[30]

Cofman B. L., King C. D., Rios G. R. et al. The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y and UGT2B7H // Drug Metabolism and Disposition. 1998; 26: 73-77.

[31]

Cofman B. L., Rios G. R., King C. D. et al. Human UGT2B7 catalyses morphine glucuronidation // Drug Metabolism and Disposition. 1997; 25: 1-4.

[32]

Bock K., Gschneidmeier H., Heel H. et al. AH receptor controlled transcriptional regulation and function of rat andhu-man UDP-glucuronosyl transferase isoforms // Advances in Enzyme Regulation. 1998; 38: 207.

[33]

Mackenzie P I., Bock K. W., Burchell B. et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily // Pharmacogenetics and Genomics. 2005; 15: 677-685.

[34]

Glasson J. C., Sawyer T., Lindley C. M. et al. Patient specific factors affecting patient-controlled analgesia dosing // Journal of Pain and Palliative Care Pharmacotherapy. 2002; 16: 5-21.

[35]

Christrup L. L. Morphine metabolites // Acta Anaesthesiolo-gica Scandinavica. 1997; 41: 116-122.

[36]

Armstrong S. C., Cozza K. L. Pharmacokinetics and drug interactions of morphine, codeine and their derivatives: theory and clinical reality // Psychosomatics. 2003; 42: 71.

[37]

Penson R. T., Joel S. P., Gloyne A. et al. Morphine analgesia in cancer pain: role of the glucuronides // Journal of Opioid Management. 2005; 1: 83-90.

[38]

Vaughan D. P., Beckett A. H. The influence of smoking on the intersubject variation in pentazocine elimination // British Journal of Clinical Pharmacology. 1976; 3: 279-283.

[39]

Keeri-Szanto M., Pomeroy J. R. Atmospheric pollution and pentazocine metabolism // Lancet. 1971; 1: 947-949.

[40]

Boston Collaborative Drug Surveillance Program. Decreased clinical efficacy of propoxyphene in cigarette smokers // Clinical Pharmacology and Therapeutics. 1973; 14: 259-263.

[41]

Jick H. Smoking and clinical drug effects // Medical Clinics of North America. 1974; 58: 1143-1149.

[42]

Rogers J. F., Findlay J., Hull J. H. et al. Codeine disposition in smokers and non-smokers // Clinical Pharmacology and Therapeutics. 1982; 32: 218-227.

[43]

Yue Q. Y., Tomson T., Sawe J. Carbemazepine and cigarette smoking induce differentially the metabolism of codeine in man // Pharmacogenetics. 1994; 4: 193-198.

[44]

Caraco Y., Sheller J., Wood A. J. Pharmacogenetic determinants of codeine induction by rifampicin: the impact on codeine's respiratory, psychomotor and miotic effects // Journal of Pharmacology and Experimental Therapeutics. 1997; 281: 330-336.

[45]

Vree T. B., van Dongen R. T., Koopman-Kimenai P. M. Codeine analgesia is due to codeine-6-glucuronide, not morphine // International Journal of Clinical Practice. 2000; 54: 395-398.

[46]

Projean D., Morin P. E., Tu T. M. et al. Identification of CY-P3A4 and CYP2C8 as the major cytochrome P450s responsible for morphine n-demethylation in human liver // Xeno-biotica. 2003; 33: 841-854.

[47]

Stanley T. H., de Lange S. The effects of population habits on side effects and narcotic requirements during high-dose fentanyl anaesthesia // Canadian Anaesthetists' Society Journal. 1984; 4: 368-376.

[48]

Boer F., Olofson E., Bovill J. G. et al. Pulmonary uptake of sufentanil during and after constant rate infusion // British Journal of Anaesthesia. 1996; 76: 203-208.

[49]

Miller L. G. Recent developments in the study of the effects of cigarette smoking on clinical pharmacokinetics and clinical pharmacodynamics // Clinical Pharmacokinetics. 1989; 17: 90-108.

[50]

Bock K. W., Wiltfang J., Blume R. et al. Paracetamol as a test drug to determine glucuronide formation in man. Effects of inducers and of smoking // European Journal of Clinical Pharmacology. 1987; 31: 677-683.

[51]

Garg S.K., Ravi-kiran T. N. Effect of smoking on phenylbutazone disposition // International Journal of Clinical Pharmacology, Therapy and Toxicology. 1982; 20: 289-290.

[52]

Teiria H., Rautoma P., Yli-Hankala A. Effect of smoking on dose requirements for vecuronium // British Journal of Anaesthesia. 1996; 76: 154-155.

[53]

Rautoma P., Vartling N. Smoking increases the requirement for rocuronium // Canadian Journal of Anaesthesia. 1998; 45: 651-654.

[54]

Latorre F., de Almeida M. C., Stanek A. et al. The interaction between rocuronium and smoking. The effect of smoking on neuromuscular transmission after rocuronium // Anaesthesist. 1997; 46: 493-495.

[55]

Puura A. I., Rorarius M. G., Laippala P. et al. Does abstinence from smoking or a transdermal nicotine system influence atracurium-induced neuromuscular block? // Anesthesia and Analgesia. 1998; 87: 430-433.

[56]

Jokinen M. J., Olkolla K. T., Ahonen J., Neuvonen P. J. Effect of rifampicin and tobacco smoking on the pharmacokinetics of ropivicaine // Clinical Pharmacology and Therapeutics. 2001; 70: 344-350.

[57]

Wang J. S., Backman J. T., Taavitsainen P. Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hy-droxylation in humans // Drug Metabolism and Disposition. 2000; 28: 959-965.

[58]

Powell R. J., Thiercelin F. F., Vozeh S., Riegelman S. The Influence of cigarette smoking and sex on theophylline disposition // American Review of Respiratory Disease. 1977; 116: 17-23.

[59]

Pfeifer H. F., Greenblat D. J. Clinical toxicity of theophylline in relation to cigarette smoking // Chest. 1978; 73: 455-459.

[60]

Spracklin D. K., Hankins D. C., Fisher J. M. Cytochrome P4502E1 is the principle catalyst of human oxidative halothane metabolism in vitro // Journal of Pharmacology and Experimental Therapeutics. 1997; 281: 400-411.

[61]

Kharasch E. D., Thummel K. E. Identification of cytochrome P450 2E1 as the predominant enzyme catalysing human liver microsomal defluorination of sevoflurane, isoflurane and methoxyflurane // Anesthesiology. 1993; 79: 795-807.

[62]

O’Shea D., Davis S. N., Kim R. B. et al. Effects of fasting and obesity in humans on the 6-hydroxylation of chlorzoxazone: a putative probe of CYP2E1 activity // Clinical Pharmacology and Therapeutics. 1992; 56: 359-367.

[63]

Jarvelainen H. A., Fang C., Ingelman-Sundberg M. Kuppfer cell inactivation alleviates ethanol induced steatosis and CYP2E1 induction but not inflammatory responses in rat liver // Journal of Hepatology. 2000; 32: 900-910.

[64]

Howard L. A., Micu A. L., Sellers E. M. et al. Low doses of nicotine and ethanol induce CYP2E1 and chlorzoxazone metabolism in rat liver // Journal of Pharmacology and Experimental Therapeutics. 2001; 299: 542-550.

[65]

Gut J., Christen U., Huwyler J. Mechanisms of halothane toxicity: novel insights // Pharmacology and Therapeutics. 1993; 58: 133-135.

[66]

Kharash E. D., Hankins D., Mautz D. et al. Identification of the enzyme for oxidative halothane metabolism: implication for the prevention of halothane hepatitis // Lancet. 1996; 18: 1367-1371.

[67]

Kenna J. G., Martin J. L., Satoh H. et al. Factors affecting the expression of trifluoroaceylated microsomal protein neoantigens in rats treated with halothane // Drug Metabolism and Disposition. 1990; 18: 788-793.

[68]

Eliasson E., Gardner I., Hume-Smith H. et al. Interindividual variability in P450 dependent generation of neoantigens in halothane hepatitis // Chemical-Biological Interactions. 1998; 116: 123-124.

[69]

Klotz U., Ammon E. Clinical and toxicological consequences of the inductive potential of ethanol // European Journal of Clinical Pharmacology. 1998; 54: 7-12.

[70]

Turner G. B., O’Rourke D., Scott G. O. et al. Fatal hepatotoxic-ity after re-exposure to isoflurane: a case report and review of the literature // European Journal of Gastroenterology and Hepatology. 2000; 12: 955-959.

[71]

Van der Reis L., Askin S. J., Frecker G. N. et al. Hepatic necrosis after enflurane anaesthesia // Journal of the American Medical Association. 1974; 227: 76.

[72]

Christ D. D., Satoh H., Kenna J. G. et al. Potential metabolic basis for enflurane hepatitis and the apparent cross sensitization between enflurane and halothane // Drug Metabolism and Disposition. 1988; 16: 135-140.

[73]

Mazze R. I., Trudel J. R., Cousins M. J. Methoxyflurane metabolism and renal dysfunction // Anesthesiology. 1971; 35: 247-252.

[74]

Mazze R. I., Woodruff R. E., Heerdt M. E. Isoniazid induced defluorination in humans // Anesthesiology. 1979; 50: 213217.

[75]

Kharasch E. D., Hankins D. C., Thummel K. E. Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity // Anesthesiology. 1995; 82: 689-699.

[76]

Laisalmi M., Soikkeli A., Kokki H. et al. Fluoride metabolism in smokers and non-smokers following enflurane anaesthesia // British Journal of Anaesthesia. 2003; 91: 800-804.

[77]

Lieber C. S. Cytochrome P450 2E1: Its physiological and pathological role // Physiological Reviews. 1997; 77: 517-544.

[78]

Chen W. J., Parnell S. E., West J. R. et al. Nicotine decreases blood alcohol concentration in neonatal rats // Alcoholism, Clinical Experimental Research. 2001; 25: 1072-1077.

[79]

Batel P., Pessione F., Maitre C., Rueff B. Relationship between alcohol and tobacco dependencies among alcoholics who smoke // Addiction. 1995; 90: 977-980.

[80]

Chimbira W., Sweeney B. P. The effect of smoking on postoperative nausea and vomiting // Anaesthesia. 2000; 55: 540545.

[81]

Sweeney B. P Why are smokers protected against PONV? // British Journal Anaesthesia. 2002; 89: 1-4.

[82]

Kroon L. A. Drug interactions with smoking // American Journal of Health-System Pharmacy. 2007; 64: 1917-1921.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/