ASTROCYTES AND SYNAPTIC PLASTICITY. PART II. EXTRACELLULAR MATRIX AND PERINUERONAL NET

Vadim N Shvalev , Alexander A Sosunov , Yury A Chelyshev

Neurology Bulletin ›› 2018, Vol. L ›› Issue (3) : 38 -43.

PDF
Neurology Bulletin ›› 2018, Vol. L ›› Issue (3) : 38 -43. DOI: 10.17816/nb14132
Articles
review-article

ASTROCYTES AND SYNAPTIC PLASTICITY. PART II. EXTRACELLULAR MATRIX AND PERINUERONAL NET

Author information +
History +
PDF

Abstract

Here we present modern data on astrocyte participation in the formation of extracellular matrix (ECM) and its specialization in the perineurona nets (PNN) and significance of ECM/PNN in synaptogenesis and synaptic plasticity. Special attention was given to schizophrenia and ECM alterations as a critical mechanism in synaptic pathology in the schizophrenia.

Keywords

synapse / astrocytes / extracellular matrix / perineuronal nets

Cite this article

Download citation ▾
Vadim N Shvalev, Alexander A Sosunov, Yury A Chelyshev. ASTROCYTES AND SYNAPTIC PLASTICITY. PART II. EXTRACELLULAR MATRIX AND PERINUERONAL NET. Neurology Bulletin, 2018, L(3): 38-43 DOI:10.17816/nb14132

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baroncelli L., Scali M., Sansevero G. et al. Experience affects critical period plasticity in the visual cortex through an epigenetic regulation of histone post-translational modifications // J Neurosci. 2016. Vol. 36, № 12. P. 3430-3440.

[2]

Bartoletti A., Medini P., Berardi N., Maffei L. Environmental enrichment prevents effects of dark-rearing in the rat visual cortex // Nat Neurosci. 2004. Vol. 7, № 3. P. 215-216.

[3]

Blumcke I., Thom M., Aronica E. et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods // Epilepsia. 2013. Vol. 54, № 7. P. 1315-1329.

[4]

Brakebusch C., Seidenbecher C.I., Asztely F. et al. Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory // Mol Cell Biol. 2002. Vol. 22. P. 7417-7427.

[5]

Brandon N.J., Millar J.K., Korth C. et al. Understanding the role of DISC1 in psychiatric disease and during normal development // J Neurosci. 2009. Vol.29. P. 12768-12775.

[6]

Carstens K.E., Phillips M.L., Pozzo-Miller L. et al. Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons // J Neurosci. 2016. Vol. 36, № 23. P. 6312-6320.

[7]

Carulli D., Pizzorusso T., Kwok J.C. et al. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity // Brain. 2010. Vol. 133, № 8. P. 2331-2347.

[8]

Chen N., Bao Y., Xue Y. et al. Meta-analyses of RELN variants in neuropsychiatric disorders // Behav Brain Res. 2017. Vol. 332. P. 110-119.

[9]

Czipri M., Otto J.M., Cs-Szabo G. et al. Genetic rescue of chondrodysplasia and the perinatal lethal effect of cartilage link protein deficiency // J Biol Chem. 2003. Vol. 278, № 40. P. 39214-39223.

[10]

Dauth S., Grevesse T., Pantazopoulos H. et al. Extracellular matrix protein expression is brain region dependent // J Comp Neurol. 2016. Vol. 524, № 7. P. 1309-1336.

[11]

Deepa S.S., Carulli D., Galtrey C. et al. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans // J Biol Chem. 2006. Vol. 281, № 26. P. 17789-17800.

[12]

Dudek S.M., Alexander G.M., Farris S. Rediscovering area CA2: unique properties and functions // Nat Rev Neurosci. 2016. Vol. 17, № 2. P. 89-102.

[13]

Ebrahimi M., Yamamoto Y., Sharifi K. et al. Astrocyte-expressed FABP7 regulates dendritic morphology and excitatory synaptic function of cortical neurons // Glia. 2016. Vol. 64. P. 48-62.

[14]

Escudero-Esparza A., Kalchishkova N., Kurbasic E. et al. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly // FASEB J. 2013. Vol. 27. P. 5083-5093.

[15]

Fagiolini M., Hensch T.K. Inhibitory threshold for critical-period activation in primary visual cortex // Nature. 2000. Vol. 404, № 6774. P. 183-186.

[16]

Favuzzi E., Marques-Smith A., Deogracias R. et al. Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican // Neuron. 2017. Vol. 95. P. 639-655.

[17]

Fisher D., Xing B., Dill J. et al. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors // J Neurosci. 2011. Vol. 31(40). P. 14051-14066.

[18]

Fowke T.M., Karunasinghe R.N., Bai J.Z. et al. Hyaluronan synthesis by developing cortical neurons in vitro // Sci Rep. 2017. Vol. 7. P. 44135.

[19]

Frischknecht R., Heine M., Perrais D. et al. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity // Nat Neurosci. 2009. Vol. 12. P. 897-904.

[20]

Gasque P., Dean Y.D., McGreal E.P. et al. Complement components of the innate immune system in health and disease in the CNS // Immunopharmacology. 2000. Vol. 49. P. 171-186.

[21]

Gogolla N., Caroni P., Luthi A., Herry C. Perineuronal nets protect fear memories from erasure. Science. 2009. Vol. 325, № 5945. P. 1258-1261.

[22]

Gurevicius K., Kuang.F, Stoenica L. et al. Genetic ablation of tenascin-C expression leads to abnormal hippocampal CA1 structure and electrical activity in vivo // Hippocampus. 2009. Vol. 19. P. 1232-1246.

[23]

Harauzov A., Spolidoro M., DiCristo G. et al. Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity // J Neurosci. 2010. Vol. 30, № 1. P. 361-371.

[24]

Hardingham G.E., Do K.Q. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis // Nat Rev Neurosci. 2016. Vol. 17. P. 125-134.

[25]

Irintchev A., Rollenhagen A., Troncoso E. et al. Structural and functional aberrations in the cerebral cortex of tenascin-C deficient mice // Cereb Cortex. 2005. Vol. 15. P. 950-962.

[26]

Kim R., Sepulveda-Orengo M.T., Healey K.L. et al. Regulation of glutamate transporter 1 (GLT-1) gene expression by cocaine self-administration and withdrawal // Neuropharmacology. 2018. Vol. 128. P. 1-10.

[27]

Kochlamazashvili G., Henneberger C., Bukalo O. et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels // Neuron. 2010. Vol. 67. P. 116-128.

[28]

Kolluri N., Sun Z., Sampson A.R., Lewis D.A. Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia // Am J Psychiatry. 2005. Vol. 162. P. 1200-1202.

[29]

Lensjo K.K., Christensen A.C., Tennoe S. et al. Differential expression and cell-type specificity of perineuronal nets in hippocampus, medial entorhinal cortex, and visual cortex examined in the rat and mouse // eNeuro. 2017. Vol. 4. P. 3.

[30]

Lensjo K.K., Lepperod M.E., Dick G. et al. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity // J Neurosci. 2017. Vol. 37, № 5. P. 1269-1283.

[31]

Mayilyan K.R., Weinberger D.R., Sim R.B. The complement system in schizophrenia // Drug News Perspect. 2008. Vol. 21. P. 200-210.

[32]

Morawski M., Reinert T., Meyer-Klaucke W. et al. Ion exchanger in the brain: Quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties // Sci Rep. 2015. Vol. 5. P. 16471.

[33]

Morellini F., Sivukhina E., Stoenica L. et al. Improved reversal learning and working memory and enhanced reactivity to novelty in mice with enhanced GABAergic innervation in the dentate gyrus // Cereb Cortex. 2010. Vol. 20. P. 2712-2727.

[34]

Nicholson C., Sykova E. Extracellular space structure revealed by diffusion analysis // Trends Neurosci. 1998. Vol. 21, № 5. P. 207-215.

[35]

Pantazopoulos H., Woo T.U., Lim M.P. et al. Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia // Arch Gen Psychiatry. 2010. Vol. 67. P. 155-166.

[36]

Pizzorusso T., Medini P., Berardi N. et al. Reactivation of ocular dominance plasticity in the adult visual cortex // Science. 2002. Vol. 298, № 5596. P. 1248-1251.

[37]

Romberg C., Yang S., Melani R. et al. Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex // J Neurosci. 2013. Vol. 33. 7057-7065.

[38]

Selemon L.D., Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development // Transl Psychiatry. 2015. Vol. 5. e623.

[39]

Shen Y., Tenney A.P., Busch S.A. et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration // Science. 2009. Vol. 326. P. 592-596.

[40]

Shimamoto C., Ohnishi T., Maekawa M. et al. Functional characterization of FABP3, 5 and 7 gene variants identified in schizophrenia and autism spectrum disorder and mouse behavioral studies // Hum Mol Genet. 2014. Vol. 23. P. 6495-6511.

[41]

Sloviter R.S. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy // Hippocampus. 1991. Vol. 1, № 1. P. 41-66.

[42]

Smith C.C., Mauricio R., Nobre L. et al. Differential regulation of perineuronal nets in the brain and spinal cord with exercise training // Brain Res Bull. 2015. Vol. 111. P. 20-26.

[43]

Song I., Dityatev A. Crosstalk between glia, extracellular matrix and neurons // Brain Res Bull. 2018. Vol. 136. P. 101-108.

[44]

Stamenkovic V., Milenkovic I., Galjak N. et al. Enriched environment alters the behavioral profile of tenascin-C deficient mice // Behav Brain Res. 2017. Vol. 331. P. 241-253.

[45]

Steen V.M., Nepal C., Ersland K.M. et al. Neuropsychological deficits in mice depleted of the schizophrenia susceptibility gene CSMD1 // PLoS One. 2013. Vol. 8. e79501.

[46]

Suttkus A., Rohn S., Weigel S. et al. Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress // Cell Death Dis. 2014. Vol. 5. P. 1119.

[47]

Tanahashi S., Yamamura S., Nakagawa M. et al. Clozapine, but not haloperidol, enhances glial D-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes // Br J Pharmacol. 2012. Vol. 165. P. 1543-1555.

[48]

Thompson E.H., Lensjo K.K., Wigestrand M.B. et al. Removal of perineuronal nets disrupts recall of a remote fear memory // Proc Natl Acad Sci U S A. 2018. Vol. 115, № 3. P. 607-612.

[49]

Tomasi D., Volkow N.D. Mapping small-world properties through development in the human brain: disruption in schizophrenia // PLoS One. 2014. Vol. 9. e96176.

[50]

Wasser C.R., Herz J. Reelin: Neurodevelopmental architect and homeostatic regulator of excitatory synapses // J Biol Chem. 2017. Vol. 292. P. 1330-1338.

[51]

Watanabe A., Toyota T., Owada Y. et al. Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotyp // PLoS Biol. 2007. Vol. 5. e297.

[52]

Watanabe H., Yamada Y. Chondrodysplasia of gene knockout mice for aggrecan and link protein // Glycoconj J. 2002. Vol. 19, № 4. P. 269-273.

[53]

Watanabe H., Yamada Y. Mice lacking link protein develop dwarfism and craniofacial abnormalities // Nat Genet. 1999. Vol. 21, № 2. P. 225-229.

[54]

Weber P., Bartsch U., Rasband M.N. et al. Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS // J Neurosci. 1999. Vol. 19. P. 4245-4262.

[55]

Wiesel T.N., Hubel D.H. Extent of recovery from the effects of visual deprivation in kittens // J Neurophysiol. 1965. Vol. 28, № 6. P. 1060-1072.

[56]

Wittner L., Huberfeld G., Clemenceau S. et al. The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro // Brain. 2009. Vol. 132, № 11. P. 3032-3046.

[57]

Woo T.U. Neurobiology of schizophrenia onset. // Curr Top Behav Neurosci. 2014. Vol. 16. P. 267-295.

RIGHTS & PERMISSIONS

Shvalev V.N., Sosunov A.A., Chelyshev Y.A.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/