Influence of different concentrations of fibrinogen on the properties of a fibrin matrix for vascular tissue engineering
Vera G. Matveeva , Mariam Yu. Khanova , Tatyana V. Glushkova , Larisa V. Antonova
I.P. Pavlov Russian Medical Biological Herald ›› 2021, Vol. 29 ›› Issue (1) : 21 -34.
Influence of different concentrations of fibrinogen on the properties of a fibrin matrix for vascular tissue engineering
Aim. To evaluate the potential utility of fibrin matrices containing 10, 20, and 25 mg/ml of fibrinogen (fibrin-10, fibrin-20, and fibrin-30, respectively) in vascular tissue engineering (VTE).
Materials and Methods. Fibrinogen was isolated using the method of ethanol cryoprecipitation and polymerized using a solution of thrombin and CaCl2. The fibrin structure was studied in a scanning electron microscope, and the physical and mechanical properties of the material were tested on a Zwick/Roell test machine. The metabolic activity of endothelial cells (EC) on the fibrin surface was evaluated by the MTT assay, and the viability of fibroblasts in the thickness of fibrin and possibility for migration by in fluorescent and light microscopy. Percent of fibrin shrinkage was determined from the difference in the sample volumes before and after removal of moisture.
Results. The fiber diameter did not differ among all fibrin samples, but the pore diameter in fibrin-30 was smaller than those in fibrin-10 and fibrin-20. A possibility for migration of fibroblasts into the depth of the fibrin matrix and preservation of 97-100% viability of cells at a depth 5 mm was confirmed. The metabolic activity of EC on the surface of fibrin-20 and fibrin-30 exceeded that on collagen, fibronectin, and fibrin-10. All fibrin samples shrank in volume to 95.5-99.5%, and the highest shrinkage was seen in fibrin-10. The physical and mechanical properties of fibrin were inferior to those of human A. mammaria by a factor of 10.
Conclusion. Fibrin with fibrinogen concentrations of 20 and 30 mg/ml maintains a high metabolic and proliferative activity of EC on the surface and also a high viability of fibroblasts in the matrix. Its availability, ease of preparation, and a number of other favorable properties make fibrin a promising material for VTE. However, the problem of insufficient strength requires further investigations.
fibrin / fibrinogen / structure / biocompatibility / mechanical strength / vascular tissue engineering
| [1] |
Best C, Strouse R, Hor K, et al. Toward a patient-specific tissue engineered vascular graft. Journal of Tissue Engineering. 2018;9. doi:10.1177/2041731 418764709 |
| [2] |
Best C., Strouse R., Hor K., et al. Toward a patient-specific tissue engineered vascular graft // Journal of Tissue Engineering. 2018. Vol. 9. doi:10.1177/ 2041731418764709 |
| [3] |
Antonova LV, Sevostyanova VV, Seifalian AM, et al. Comparative in vitro testing of biodegradable vascular grafts for tissue engineering applications. Complex Issues of Cardiovascular Diseases. 2015; (4):34-41. (In Russ). |
| [4] |
Антонова Л.В., Севостьянова В.В., Сейфалиан А.М., и др. Сравнительное тестирование in vitro биодеградируемых сосудистых имплантов для оценки перспективы использования в тканевой инженерии // Комплексные проблемы сердечно-сосудистых заболеваний. 2015. №4. C. 34-41. |
| [5] |
Ravi S, Chaikof EL. Biomaterials for vascular tissue engineering. Regenerative Medicine. 2010;5(1): 107-20. doi:10.2217/rme.09.77 |
| [6] |
Ravi S., Chaikof E.L. Biomaterials for vascular tissue engineering // Regenerative Medicine. 2010. Vol. 5, №1. P. 107-120. doi:10.2217/rme.09.77 |
| [7] |
Park CH, Woo KM. Fibrin-Based Biomaterial Applications in Tissue Engineering and Regenerative Medicine. In: Noh I., editor. Biomimetic Medical Materials From Nanotechnology to 3D Bioprinting. Advances in Experimental Medicine and Biology. Seoul, South Korea: Springer Nature Singapore Pte Ltd.; 2018. Vol. 1064. P. 253-61. doi:10.1007/978-981-13-0445-3_16 |
| [8] |
Park C.H., Woo K.M. Fibrin-Based Biomaterial Applications in Tissue Engineering and Regenerative Medicine. In: Noh I., editor. Biomimetic Medical Materials From Nanotechnology to 3D Bioprinting. Advances in Experimental Medicine and Biology. Seoul, South Korea: Springer Nature Singapore Pte Ltd.; 2018. Vol. 1064. P. 253-261. doi:10.1007/978-981-13-0445-3_16 |
| [9] |
Barsotti MC, Magera A, Armani C, et al. Fibrin acts as biomimetic niche inducing both differentiation and stem cell marker expression of early human endothelial progenitor cells. Cell Proliferation. 2011; 44(1):33-48. doi:10.1111/j.1365-2184.2010.00715.x |
| [10] |
Barsotti M.C., Magera A., Armani C., et al. Fibrin acts as biomimetic niche inducing both differentiation and stem cell marker expression of early human endothelial progenitor cells // Cell Proliferation. 2011. Vol. 44, №1. P. 33-48. doi:10.1111/ j.1365-2184.2010.00715.x |
| [11] |
Chiu CL, Hecht V, Duong H, et al. Permeability of three-dimensional fibrin constructs corresponds to fibrinogen and thrombin concentrations. BioResearch Open Access. 2012;1(1):34-40. doi:10.1089/ biores.2012.0211 |
| [12] |
Chiu C.L., Hecht V., Duong H., et al. Permeability of three-dimensional fibrin constructs corresponds to fibrinogen and thrombin concentrations // Bio Research Open Access. 2012. Vol. 1, №1. P. 34-40. doi:10.1089/biores.2012.0211 |
| [13] |
Li W, Sigley J, Pieters M, et al. Fibrin Fiber Stiffness Is Strongly Affected by Fiber Diameter, but Not by Fibrinogen Glycation. Biophysical Journal. 2016;110(6):1400-10. doi:10.1016/j.bpj.2016.02.021 |
| [14] |
Li W., Sigley J., Pieters M., et al. Fibrin Fiber Stiffness Is Strongly Affected by Fiber Diameter, but Not by Fibrinogen Glycation // Biophysical Journal. 2016. Vol. 110, №6. P. 1400-1410. doi:10.1016/j.bpj.2016.02.021 |
| [15] |
Aper T, Wilhelmi M, Gebhardt C, et al. Novel method for the generation of tissue-engineered vascular grafts based on a highly compacted fibrin matrix. Acta Biomaterialia. 2016;29:21-32. doi:10.1016/j.actbio.2015.10.012 |
| [16] |
Aper T., Wilhelmi M., Gebhardt C., et al. Novel method for the generation of tissue-engineered vascular grafts based on a highly compacted fibrin matrix // Acta Biomaterialia. 2016. Vol. 29. P. 21-32. doi:10.1016/j.actbio.2015.10.012 |
| [17] |
Matveeva VG, Khanova MYu, Velikanova EA, et al. Isolation and characteristics of colonyforming endothelial cells from peripheral blood in patients with ischemic heart disease. Tsitologiya. 2018;60(8): 598-608. (In Russ). doi:10.31116/tsitol.2018.08.03 |
| [18] |
Матвеева В.Г., Ханова М.Ю., Великанова Е.А., и др. Возможность получения и характеристика колониеформирующих эндотелиальных клеток из периферической крови пациентов с ишемической болезнью сердца // Цитология. 2018. Т. 60, №8. C. 598-608. doi:10.31116/tsitol.2018.08.03 |
| [19] |
Weisel JW, Litvinov RI. Mechanisms of fibrin polymerization and clinical implications. Blood. 2013; 121(10):1712-9. doi:10.1182/blood-2012-09-306639 |
| [20] |
Weisel J.W., Litvinov R.I. Mechanisms of fibrin polymerization and clinical implications // Blood. 2013. Vol. 121, №10. P. 1712-1719. doi:10.1182/ blood-2012-09-306639 |
| [21] |
Profumo A, Turci M, Damonte G, et al. Kinetics of fibrinopeptide release by thrombin as a function of CaCl2 concentration: different susceptibility of FPA and FPB and evidence for a fibrinogen isoform-specific effect at physiological Ca2+ concentration. Biochemistry. 2003;42(42):12335-48. doi:10.1021/bi034411e |
| [22] |
Profumo A., Turci M., Damonte G., et al. Kinetics of fibrinopeptide release by thrombin as a function of CaCl2 concentration: different susceptibility of FPA and FPB and evidence for a fibrinogen isoform-specific effect at physiological Ca2+ concentration // Biochemistry. 2003. Vol. 42, №42. P. 12335-12348. doi:10.1021/bi034411e |
| [23] |
Chen H, Kassab GS. Microstructure-based biomechanics of coronary arteries in health and disease. Journal of Biomechanics. 2016;49(12):2548-59. doi:10.1016/j.jbiomech.2016.03.023 |
| [24] |
Chen H., Kassab G.S. Microstructure-based biomechanics of coronary arteries in health and disease // Journal of Biomechanics. 2016. Vol. 49, №12. P. 2548-2559. doi:10.1016/j.jbiomech.2016.03.023 |
| [25] |
Aper T, Teebken OE, Steinhoff G, et al. Use of a fibrin preparation in the engineering of a vascular graft model. European Journal of Vascular and Endovascular Surgery. 2004;28(3):296-302. doi:10.1016/ j.ejvs.2004.05.016 |
| [26] |
Aper T., Teebken O.E., Steinhoff G., et al. Use of a fibrin preparation in the engineering of a vascular graft model // European Journal of Vascular and Endovascular Surgery. 2004. Vol. 28, №3. P. 296-302. doi:10.1016/j.ejvs.2004.05.016 |
| [27] |
Kim DH, Han K, Gupta K, et al. Mechano-sensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials. 2009;30(29):5433-44. doi:10.1016/j.biomaterials.2009.06.042 |
| [28] |
Kim D.-H., Han K., Gupta K., et al. Mechano-sensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients // Bio-materials. 2009. Vol. 30, №29. P. 5433-5444. doi:10.1016/j.biomaterials.2009.06.042 |
| [29] |
Leon-Valdivieso CY, Wedgwood J, Lallana E, et al. Fibroblast migration correlates with matrix softness. A study in knob-hole engineered fibrin. APL Bioengineering. 2018;2(3):036102. doi:10.1063/1.5022841 |
| [30] |
Leon-Valdivieso C.Y., Wedgwood J., Lallana E., et al. Fibroblast migration correlates with matrix softness. A study in knob-hole engineered fibrin // APL Bioengineering. 2018. Vol. 2, №3. P. 036102. doi:10.1063/1.5022841 |
| [31] |
Sternlicht MD, Werb Z. How matrix metallo-proteinases regulate cell behavior. Annual Review of Cell and Developmental Biology. 2001;17:463-516. doi:10.1146/annurev.cellbio.17.1.463 |
| [32] |
Sternlicht M.D., Werb Z. How matrix metallo-proteinases regulate cell behavior // Annual Review of Cell and Developmental Biology. 2001. Vol. 17. P. 463-516. doi:10.1146/annurev.cellbio.17.1.463 |
| [33] |
Raeber GP, Lutolf MP, Hubbell JA. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophysical Journal. 2005;89(2):1374-88. doi:10.1529/ biophysj.104.050682 |
| [34] |
Raeber G.P., Lutolf M.P., Hubbell J.A. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration // Biophysical Journal. 2005. Vol. 89, №2. P. 1374-1388. doi:10.1529/biophysj.104.050682 |
| [35] |
Li Y, Meng H, Liu Y, et al. Fibrin Gel as an Injectable Biodegradable Scaffold and Cell Carrier for Tissue Engineering. The Scientific World Journal. 2015;2015:685690. doi:10.1155/2015/685690 |
| [36] |
Li Y., Meng H., Liu Y., et al. Fibrin Gel as an Injectable Biodegradable Scaffold and Cell Carrier for Tissue Engineering // The Scientific World Journal. 2015. Vol. 2015. P. 685690. doi:10.1155/ 2015/685690 |
| [37] |
Moreira R, Neusser C, Kruse M, et al. Tissue-Engineered Fibrin-Based Heart Valve with Bio-Inspired Textile Reinforcement. Advanced Healthcare Materials. 2016;5(16):2113-21. doi:10.1002/ adhm.201600300 |
| [38] |
Moreira R., Neusser C., Kruse M., et al. Tissue-Engineered Fibrin-Based Heart Valve with Bio-Inspired Textile Reinforcement // Advanced Healthcare Materials. 2016. Vol. 5, №16. P. 2113-2121. doi:10.1002/adhm.201600300 |
| [39] |
Tschoeke B, Flanagan TC, Cornelissen A, et al. Development of a composite degradable/non-degradable tissue-engineered vascular graft. Artificial Organs. 2008;32(10):800-9. doi:10.1111/j.1525-1594.2008.00601.x |
| [40] |
Tschoeke B., Flanagan T.C., Cornelissen A., et al. Development of a composite degradable/non-degradable tissue-engineered vascular graft // Artificial Organs. 2008. Vol. 32, №10. P. 800-809. doi:10.1111/j.1525-1594.2008.00601.x |
| [41] |
Flanagan TC, Cornelissen C, Koch S, et al. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials. 2007;28(23): 3388-97. doi:10.1016/j.biomaterials.2007.04.012 |
| [42] |
Flanagan T.C., Cornelissen C., Koch S., et al. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning // Biomaterials. 2007. Vol. 28, №23. P. 3388-3397. doi:10.1016/j.biomaterials. 2007.04.012 |
Matveeva V., Khanova M., Glushkova T., Antonova L.
/
| 〈 |
|
〉 |