Comparison of cytotoxicity of vascular prostheses in vitro
Roman E. Kalinin , Igor A. Suchkov , Nina D. Mzhavanadze , Natalya V. Korotkova , Aleksandr A. Nikiforov , Ivan Yu. Surov , Polina Yu. Ivanova , Anastasiya D. Bozhenova , Ekaterina A. Strelnikova
I.P. Pavlov Russian Medical Biological Herald ›› 2020, Vol. 28 ›› Issue (2) : 183 -192.
Comparison of cytotoxicity of vascular prostheses in vitro
Aim. To study and compare cytotoxicity of the main types of synthetic prostheses used in arterial reconstructive surgery, including polytetrafluoroethylene (PTFE) and polyethylene-terephthalate (Dacron).
Materials and Methods. On the culture of human umbilical vein endothelial cells (HUVEC) of the 3rd passage, MTS test was conducted that is used in laboratory examinations with attraction of cellular technologies to study cytotoxicity of medical drugs and medical products. The test
implies use of MTS reagent that is 3-(4,5-dimethylthiazol-2-il)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium; additionally phenazine methosulfate (PMS) was used that plays the role of electron-binding reagent. In the experiment, cells were incubated with PTFE and Dacron within 24 hours at 37ᵒC with 5% CO2. For control, HUVEC cultured in the standard growth
medium, were used. In the presence of PMS, MTS was reduced by mitochondrial dehydrogenases of endothelial cells to formazan staining blue. Supernatant of cell cultures was evaluated by
photocolorimetric method on Stat Fax 3200 analyzer (microplate reader) of Awareness technology Inc. Palm City Fl. (USA).
Results. The lowest mean values were noted in Dacron group – 0.21 (0.20-0.22) optical density units, the highest values were noted in the control group – 0.36 (0.35-0.38); parameters in PTFE group were 0.35 (0.33-0.36). In comparison of the groups statistically significant differences were found between the control group and Dacron group (р<0.001), control and PTFE group (р=0.037), Dacron and PTFE (р<0.001). Incubation with Dacron led to suppression of metabolic activity of cells by 41.7% as compared to the control group (р<0.001). Metabolic activity of cells exposed to PTFE, approached that of the control group, that is, it corresponded to the optimal conditions of culturing of endothelial cells in vitro.
Conclusion. In comparison with polyethylene-terephthalate (Dacron), polytetrafluoro-ethylene (PTFE) showed the least suppression of metabolic activity of endothelial cells in vitro.
cytotoxicity / PTFE / Dacron / HUVEC / in vitro
| [1] |
Campbell CD, Brooks DH, Webster MW, et al. The use of expanded microporous polytetrafluoroethylene for limb salvage: a preliminary report. Surgery. 1976;79(5):485-91. |
| [2] |
Campbell C.D., Brooks D.H., Webster M.W., et al. The use of expanded microporous polytetrafluoroethylene for limb salvage: a preliminary report // Surgery. 1976. Vol. 79, №5. P. 485-491. |
| [3] |
Eiberg JP, Røder O, Stahl-Madsen M, et al. Fluoropolymer-coated Dacron Versus PTFE Grafts for Femorofemoral Crossover Bypass: Randomised Trial. European Journal of Vascular and Endovascular Surgery. 2006;32(4):431-8. doi:10.1016/j. ejvs.2006.04.018 |
| [4] |
Eiberg J.P., Røder O., Stahl-Madsen M., et al. Fluoropolymer-coated Dacron Versus PTFE Grafts for Femorofemoral Crossover Bypass: Randomised Trial // European Journal of Vascular and Endovascular Surgery. 2006. Vol. 32, №4. P. 431-438. doi:10.1016/j.ejvs.2006.04.018 |
| [5] |
Sauvage LR, Schloemer R, Wood SJ, et al. Successful Interposition Synthetic Graft Between Aorta and Right Coronary Artery. Angiographic Follow-Up to Sixteen Months. The Journal of Thoracic and Cardiovascular Surgery. 1976;72(3):418‐21. |
| [6] |
Sauvage L.R., Schloemer R., Wood S.J., et al. Successful Interposition Synthetic Graft Between Aorta and Right Coronary Artery. Angiographic Follow-Up to Sixteen Months // The Journal of Thoracic and Cardiovascular Surgery. 1976. Vol. 72, №3. P. 418‐421. |
| [7] |
Chard RB, Johnson DC, Nunn GR, et al. Aorta- Coronary Bypass Grafting with Polytetrafluoroethylene Conduits. Early and Late Outcome in Eight Patients. The Journal of Thoracic and Cardiovascular Surgery. 1987;94(1):132-4. |
| [8] |
Chard R.B., Johnson D.C., Nunn G.R., et al. Aorta-Coronary Bypass Grafting with Polytetrafluoroethylene Conduits. Early and Late Outcome in Eight Patients // The Journal of Thoracic and Cardiovascular Surgery. 1987. Vol. 94, №1. P. 132-134. |
| [9] |
Van Damme H, Deprez M, Creemers E, et al. Intrinsic Structural Failure of Polyester (Dacron) Vascular Grafts. A General Review. Acta Chirurgica Belgica. 2005; 105(3):249-55. doi:10.1080/00015458.2005.11679712 |
| [10] |
Van Damme H., Deprez M., Creemers E., et al. Intrinsic Structural Failure of Polyester (Dacron) Vascular Grafts. A General Review // Acta Chirurgica Belgica. 2005. Vol. 105, №3. P. 249-255. doi:10. 1080/00015458.2005.11679712 |
| [11] |
Greisler HP, editor. New Biologic and Synthetic Vascular Prostheses. Austin: R.G. Landes Co; 1991. |
| [12] |
Greisler H.P., editor. New Biologic and Synthetic Vascular Prostheses. Austin: R.G. Landes Co; 1991. |
| [13] |
Abbott WM, Green RM, Matsumoto T, et al. Prosthetic above-knee femoropopliteal bypass grafting: results of a multicenter randomized prospective trial. Above-Knee Femoropopliteal Study Group. Journal of Vascular Surgery. 1997;25(1):19-28. doi:10.1016/ S0741-5214(97)70317-3 |
| [14] |
Abbott W.M., Green R.M., Matsumoto T., et al. Prosthetic above-knee femoropopliteal bypass graf-ting: results of a multicenter randomized prospective trial. Above-Knee Femoropopliteal Study Group // Journal of Vascular Surgery. 1997. Vol. 25, №1. P. 19-28. doi:10.1016/S0741-5214(97)70317-3 |
| [15] |
Padera RF, Schoen FJ. Cardiovascular medical devices. In: Ratner B.D., Hoffman A.S., Schoen F.J., et al., editors. Biomaterials Science: an introduction to materials in medicine. 2nd ed. San Diego: Elsiver Academic Press; 2004. Pt. II, chr. 7.3. P. 470-93. |
| [16] |
Padera R.F., Schoen F.J. Cardiovascular medical devices. In: Ratner B.D., Hoffman A.S., Schoen F.J., et al., editors. Biomaterials Science: an introduction to materials in medicine. 2nd ed. San Diego: Elsiver Academic Press; 2004. Pt. II, chr. 7.3. P. 470-493. |
| [17] |
Byrom MJ, Ng MK, Bannon PG. Biomechanics and biocompatibility of the perfect conduit-can we build one? Annals of Cardiothoracic Surgery. 2013;2(4): 435-43. doi:10.3978/j.issn.2225-319X.2013.05.04 |
| [18] |
Byrom M.J., Ng M.K., Bannon P.G. Biomechanics and biocompatibility of the perfect conduit-can we build one? // Annals of Cardiothoracic Surgery. 2013. Vol. 2, №4. P. 435-443. doi:10.3978/j.issn. 2225-319X.2013.05.04 |
| [19] |
Kalinin RE, Suchkov IA, Korotkova NV, et al. The research of the molecular mechanisms of endothelial dysfunction in vitro. Genes & Cells. 2019;14(1):22-32. (In Russ). doi:10.23868/201903003 |
| [20] |
Калинин Р.Е., Сучков И.А., Короткова Н.В., и др. Изучение молекулярных механизмов эндотелиальной дисфункции in vitro // Гены & Клетки. 2019. Т. 14, №1. С. 22-32. doi:10.23868/201903003 |
| [21] |
Kalinin RE, Abalenikhina YuV, Pshennikov AS, et al. Interrelation between oxidative carbonylation of proteins and lysosomal proteolysis of plasma in experimentally modelled ischemia and ischemia-reperfusion. Nauka Molodykh (Eruditio Juvenium). 2017;5(3): 338-51. (In Russ). doi:10.23888/HMJ20173338-351 |
| [22] |
Калинин Р.Е., Абаленихина Ю.В., Пшенников А.C., и др. Взаимосвязь окислительного карбонилирования белков и лизосомального протеолиза плазмы в условиях экспериментального моделирования ишемии и ишемии-реперфузии // Наука молодых (Eruditio Juvenium). 2017. Т. 5, №3. С. 338-351. doi:10.23888/HMJ20173338-351 |
| [23] |
Suchkov IA, Pshennikov AS, Gerasimov АА, et al. Prophylaxis of restenosis in reconstructive surgery of main arteries. Nauka Molodykh (Eruditio Juvenium). 2013;(2):12-9. (In Russ). |
| [24] |
Сучков И.А., Пшенников А.С., Герасимов А.А., и др. Профилактика рестеноза в реконструктивной хирургии магистральных артерий // Наука молодых (Eruditio Juvenium). 2013. №2. С. 12-19. |
| [25] |
Kalinin RE, Suchkov IA, Klimentova EA, et al. Apoptosis in vascular pathology: present and future. I.P. Pavlov Russian Medical Biological Herald. 2020;28(1):79-87. (In Russ). doi:10.23888/PAVLOVJ202028179-87 |
| [26] |
Калинин Р.Е., Сучков И.А., Климентова Э.А., и др. Апоптоз в сосудистой патологии: настоящее и будущее // Российский медико-биологический вестник имени академика И.П. Павлова. 2020. Т. 28, №1. С. 79-87. doi:10.23888/PAVLOVJ2020 28179-87 |
| [27] |
Marcus AJ, Broekman MJ, Drosopoulos JH, et al. The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. The Journal of Clinical Investigation. 1997;99(6):1351‐60. doi:10. 1172/JCI119294 |
| [28] |
Marcus A.J., Broekman M.J., Drosopoulos J.H., et al. The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39 // The Journal of Clinical Investigation. 1997. Vol. 99, №6. P. 1351‐1360. doi:10.1172/JCI119294 |
| [29] |
Ren X, Feng Y, Guo J, et al. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chemical Society Reviews. 2015;44(15):5680-742. doi:10.1039/c4cs00483c |
| [30] |
Ren X., Feng Y., Guo J., et al. Surface Modification and Endothelialization of Biomaterials as Potential Scaffolds for Vascular Tissue Engineering Applications // Chemical Society Reviews. 2015. Vol. 44, №15. P. 5680-5742. doi:10.1039/c4cs00483c |
| [31] |
Adipurnama I, Yang MC, Ciach T, et al. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomaterials Science. 2016;5(1):22-37. doi: 10.1039/c6bm00618c |
| [32] |
Adipurnama I., Yang M.C., Ciach T., et al. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review // Biomaterials Science. 2016. Vol. 5, №1. P. 22-37. doi:10.1039/c6bm00618c |
| [33] |
Vig K, Swain K, Mlambo T, et al. Adhesion of human umbilical vein endothelial cells (HUVEC) on PTFE material following surface modification by low temperature plasma treatment. Physiology. 2019;33(1):603.3. |
| [34] |
Vig K., Swain K., Mlambo T., et al. Adhesion of Human Umbilical Vein Endothelial Cells (HUVEC) on PTFE Material Following Surface Modification by Low Temperature Plasma Treatment // Physiology. 2019. Vol. 33, №1. P. 603.3. |
| [35] |
Zhou M, Wang WC, Liao YG, et al. In vitro biocompatibility evaluation of silk-fibroin/polyurethane membrane with cultivation of HUVECs. Frontiers of Materials Science. 2014;8:63-71. doi:10.1007/ s11706-014-0230-3 |
| [36] |
Zhou M., Wang W.C., Liao Y.G., et al. In vitro biocompatibility evaluation of silk-fibroin/polyurethane membrane with cultivation of HUVECs // Frontiers of Materials Science. 2014. Vol. 8. P. 63-71. doi:10.1007/s11706-014-0230-3 |
| [37] |
Shtanskiy DV, Glushankova NA, Kiryukhantsev-Korneyev FV, et al. Sravnitel’noye issledovaniye struktury i tsitotoksichnosti politetraftor•etilena posle ionnogo travleniya i ionnoy implantatsii. Fizika Tverdogo Tela. 2011;53(3):593-7. (In Russ). |
| [38] |
Штанский Д.В., Глушанкова Н.А., Кирюханцев-Корнеев Ф.В., и др. Сравнительное исследование структуры и цитотоксичности политетрафторэтилена после ионного травления и ионной имплантации // Физика твердого тела. 2011. Т. 53, №3. С. 593-597. |
| [39] |
Baydamshina DR, Trizna EY, Holyavka MG, et al. Assessment of genotoxicity and cytotoxicity for preparations of the trypsin immobilized on chitozan matrix. Proceedings of Voronezh State University. Series: Chemistry, Biology, Pharmacy. 2016;(3):53-7. (In Russ). |
| [40] |
Байдамшина Д.Р., Тризна Е.Ю., Холявка М.Г., и др. Оценка генотоксичности и цитотоксичности препаратов иммобилизованного на матрице хитозана трипсина // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2016. №3. С. 53-57. |
| [41] |
Jaffe EA, Nachman RL, Becker CG, et al. Culture of Human Endothelial Cells Derived from Umbilical Veins. Identification by Morphologic and Immunologic Criteria. The Journal of Clinical Investigation. 1973;52(11): 2745-56. doi:10.1172/JCI107470 |
| [42] |
Jaffe E.A., Nachman R.L., Becker C.G., et al. Culture of Human Endothelial Cells Derived from Umbilical Veins. Identification by Morphologic and Immunologic Criteria // The Journal of Clinical Investigation. 1973. Vol. 52, №11. P. 2745-2756. doi:10. 1172/JCI107470 |
| [43] |
Aslantürk ÖS. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. In: Genotoxicity – A Predictable Risk to Our Actual World. 2018. Available at: https://cdn. intechopen.com/pdfs/57717.pdf. Accessed: 2020 May 21. doi:10.5772/intechopen.71923 |
| [44] |
Aslantürk Ö.S. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. In: Genotoxicity – A Predictable Risk to Our Actual World. 2018. Доступно по: https://cdn. intechopen.com/pdfs/57717.pdf. Ссылка активна на 21 мая 2020. doi:10.5772/intechopen.71923 |
| [45] |
Albulescu R, Popa A-C, Enciu A-M, et al. Comprehensive In Vitro Testing of Calcium Phosphate-Based Bioceramics with Orthopedic and Dentistry Applications. Materials. 2019;12(22):3704. doi:10. 3390/ma12223704 |
| [46] |
Albulescu R., Popa A.-C., Enciu A.-M., et al. Comprehensive In Vitro Testing of Calcium Phosphate-Based Bioceramics with Orthopedic and Dentistry Applications // Materials. 2019. Vol. 12, №22. P. 3704. doi:10.3390/ma12223704 |
| [47] |
Emch О, Cavicchia J, Dasi P, et al. Hemocompatibility of Various Heart Valve Materials. In: Society for Biomaterials. Annual Meeting and Exposition. Pioneering the Future of Biomaterials. Transactions of the 38th Annual Meeting. 2014. Vol. XXXVI. Art. 28. Available at: http://abstracts.biomaterials.org/data/papers/ 2014/0332-000967.pdf. Accessed: 2020 May 21. |
| [48] |
Emch О., Cavicchia J., Dasi P., et al. Hemocompatibility of Various Heart Valve Materials. In: Society for Biomaterials. Annual Meeting and Exposition. Pioneering the Future of Biomaterials. Transactions of the 38th Annual Meeting. 2014. Vol. XXXVI. Art. 28. Available at: http://abstracts.biomaterials.org/data/papers/2014/0332-000967.pdf. Accessed: 2020 May 21. |
Kalinin R.E., Suchkov I.A., Mzhavanadze N.D., Korotkova N.V., Nikiforov A.A., Surov I.Y., Ivanova P.Y., Bozhenova A.D., Strelnikova E.A.
/
| 〈 |
|
〉 |