Functional activity of p-glycoprotein in blood-brain barrier during experimental par-kinson's syndrome
Ivan V. Chernykh , Aleksey V. Shchulkin , Pavel Yu. Mylnikov , Maria V. Gatsanoga , Maria M. Gradinar , Anna S. Yesenina , Elena N. Yakusheva
I.P. Pavlov Russian Medical Biological Herald ›› 2019, Vol. 27 ›› Issue (2) : 150 -159.
Functional activity of p-glycoprotein in blood-brain barrier during experimental par-kinson's syndrome
Background. P-glycoprotein (Pgp, ABCB1-protein) is a membrane transporter with broad substrate specificity that is localized in hepatocytes, enterocytes, epithelial renal tubules, and also in tissue barriers, including blood-brain barrier (BBB). Increased Pgp activity in BBB is one of the reasons for the pharmacoresistance of a number of CNS diseases.
Aim. Analysis of Pgp functional activity in BBB during experimental Parkinson's syndrome.
Materials and Methods. The work was performed on 90 Wistar rats, divided into 3 series (n=30 in each). The 1 series (control) was subcutaneously injected sunflower oil once a day for 7 days, and Pgp activity in BBB was assessed on the 8th day. The 2 and 3 series (pathology control) − were administered rotenone at a dose of 2.5 mg/kg once a day for 7 and 28 days respectively to simulate parkin-sonism. At the end of the experiment Pgp activity was estimated. To confirm Parkinson's syndrome, in addition to the clinical picture, level of dopamine in midbrain and striatum was determined using enzyme-linked immunosorbent assay. Pgp functional activity in BBB was assessed by the degree of penetration of its marker substrate fexofenadine into the brain after its intravenous administration at a dose of 10 mg/kg. The content of fexofenadine in the blood plasma and in brain tissue was estimated by the area under pharmacokinetic curve of the substance (in the blood or brain tissues) − AUC0-t(plasma) or AUC0-t(brain) respectively. To assess the BBB permeability the ratio AUC0-t(brain) / AUC0-t(plasma) was calculated.
Results. Rotenone administration led to the development of parkinsonism typical picture: muscle stiffness, hypokinesia, gait instability. There was a decrease in dopamine level in the striatum after 7 days by 69.6% (p=0.095), after 28 days − by 93.9% (p=0.008), in midbrain − by 72.7% (p=0.095) and 68.7% (p=0.032) respectively. Fexofenadine AUC0-t(plasma) and AUC0-t(brain) after its intravenous administration to control rats were 266.2 (246.4; 285.6) μg/ml*min and 5.9 (5.8;6.6) µg/g*min respectively, AUC0-t(brain) /AUC0-t(plasma) − 0.020 (0.019; 0.022). When rotenone was for 7 days administered − fexofenadine AUC0-t(brain) increased 2.02 times (p=0.0163), AUC0-t(brain) / AUC0-t(plasma) − 2.4 times (p=0.0283). 28 days administration of rotenone led to augmentation of AUC0-t(brain) of fexofenadine by 1.75 times (p=0.0283), AUC0-t(brain) / AUC0-t(plasma) − by 2.27 times (p=0.0163).
Conclusions. The development of Parkinson’s syndrome, caused by the administration of rotenone, inhibits Pgp functional activity in BBB, which is confirmed by the accumulation in the brain marker substrate of the transporter − fexofenadine.
Parkinson's disease / Parkinson's syndrome / P-glycoprotein / functional activity / blood-brain barrier
| [1] |
Razdorskaya VV, Yudina GK, Voskresenskaya ON. Statistics of outpatient cases of Parkinson's disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2012;112(9):72-6. (In Russ). |
| [2] |
Раздорская В.В., Юдина Г.К., Воскресенская О.Н. Статистика амбулаторных случаев болезни Пар-кинсона // Журнал неврологии и психиатрии им. С.С. Корсакова. 2012. Т. 112, №9. С. 72-76. |
| [3] |
Uversky VN, Li J, Fink AL. Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson's disease. FEBS Letters. 2001;500(3):105-8. doi: 10.1016/ S0014-5793(01)02597-2 |
| [4] |
Uversky V.N., Li J., Fink A.L. Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson's disease // FEBS Letters. 2001. Vol. 500, №3. P. 105-108. doi: 10.1016/S0014-5793(01)02597-2 |
| [5] |
Franco R, Li S, Rodriguez-Rocha H, et al. Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson's disease. Chemico-Biologi-cal Interactions. 2010;188(2):289-300. doi:10.1016/ j.cbi.2010.06.003 |
| [6] |
Franco R., Li S., Rodriguez-Rocha H., et al. Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson's disease // Chemico-Biological Interactions. 2010. Vol. 188, №2. P. 289-300. doi:10.1016/j.cbi.2010.06.003 |
| [7] |
Schober A. Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Research. 2004;318(1):215-24. doi:10.1007/ s00441-004-0938-y |
| [8] |
Schober A. Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP // Cell Tissue Research. 2004. Vol. 318, №1. P. 215-224. doi:10.1007/s00441-004-0938-y |
| [9] |
Sharom FJ. The P-glycoprotein multidrug transporter. Essays in Biochemistry. 2011;50:161-78. doi: 10.1042/bse0500161 |
| [10] |
Sharom F.J. The P-glycoprotein multidrug transporter // Essays in Biochemistry. 2011. Vol. 50. P. 161-178. doi:10.1042/bse0500161 |
| [11] |
Yakusheva EN, Chernykh IV, Shchulkin AV, et al. Sex differences of P-glycoprotein functional activity and expression in rabbits. Russian Journal of Physiology. 2014;100(8):944-52. (In Russ). |
| [12] |
Якушева Е.Н., Черных И.В., Щулькин А.В., и др. Половые различия функциональной активности и экспрессии гликопротеина-P у кроликов // Российский физиологический журнал имени И.М. Сеченова. 2014. Т. 100, №8. С. 944-952. |
| [13] |
Yakusheva EN, Chernykh IV, Shchulkin AV, et al. Methods of identification of drugs as P-glyco-protein substrates. I.P. Pavlov Russian Medical Biological Herald. 2015;(3):49-53. (In Russ). doi:10. 17816/PAVLOVJ2015349-53 |
| [14] |
Якушева Е.Н., Черных И.В., Щулькин А.В., и др. Методика определения принадлежности лекарственных средств к числу субстратов гликопротеина-P // Российский медико-биологический вестник имени академика И.П. Павлова. 2015. №3. С. 49-53. doi:10.17816/PAVLOVJ2015349-53 |
| [15] |
Brenn A, Grube M, Jedlitschky G, et al. St. John's Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer's disease mouse model-role of P-glycoprotein. Brain Pathology. 2014;24 (1):18-24. doi:10.1111/bpa.12069 |
| [16] |
Brenn A., Grube M., Jedlitschky G., et al. St. John's Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer's disease mouse model-role of P-glycoprotein // Brain Pathology. 2014. Vol. 24, №1. P. 18-24. doi:10.1111/bpa.12069 |
| [17] |
Desai BS, Monahan AJ, Carvey PM, et al. Blood–Brain Barrier Pathology in Alzheimer's and Parkinson's Disease: Implications for Drug. Therapy Cell Transplantation. 2007;16(3):285-99. doi: 10.3727/ 000000007783464731 |
| [18] |
Desai B.S., Monahan A.J., Carvey P.M., et al. Blood-Brain Barrier Pathology in Alzheimer's and Parkinson's Disease: Implications for Drug // Therapy Cell Transplantation. 2007. Vol. 16, №3. P. 285-299. doi:10.3727/000000007783464731 |
| [19] |
Voronkov DN, Dikalova YuV, Khudoerkov RM, et al. Brain nigrostriatal system changes in rotenone-induced parkinsonism (quantitative immune-morpho-logical study). Annaly Nevrologii. 2013;7(2): 34-8. (In Russ). |
| [20] |
Воронков Д.Н., Дикалова Ю.В., Худоерков Р.М., и др. Изменения в нигростриатных образованиях мозга при моделировании паркинсонизма, индуцированного ротеноном (количественное иммуноморфологическое исследование) // Анналы неврологии. 2013. Т. 7, №2. С. 34-38. |
| [21] |
Chernykh IV, Shchulkin AV, Mylnykov PYu, et al. Method of P-glycoprotein functional activity analysis in the blood-brain barrier. Neurochemical Journal. 2019;36(1):1-5. (In Russ). doi: 0.1134/S10278 13319010060 |
| [22] |
Черных И.В., Щулькин А.В., Мыльников П.Ю., и др. Метод анализа функциональной активности гликопротеина-P в гематоэнцефалическом барьере // Нейрохимия. 2019. Т. 36, №1. С. 1-5. doi:0.1134/S1027813319010060 |
| [23] |
Gatsanoga MV, Chernykh IV, Shchulkin AV, et al. The method of assessment of drugs belonging to the substrates of P-glycoprotein on female rabbits. Nauka Molodykh (Eruditio Juvenium). 2016;(3):5-10. (In Russ). |
| [24] |
Гацанога М.В., Черных И.В., Щулькин А.В., и др. Можно ли оценивать принадлежность лекарственных веществ к субстратам гликопротеина-P на самках кроликов породы шиншилла // Наука молодых (Eruditio Juvenium). 2016. №3. С. 5-10. |
| [25] |
Kiyohara C, Miyake Y, Koyanagi M, et al. Fukuoka Kinki Parkinson's Disease Study Group. MDR1 C3435T polymorphism and interaction with environmental factors in risk of Parkinson's disease: a case-control study in Japan. Drug Metabolism Pharmacokinetics. 2013;28(2):138-43. doi:10.2133/ dmpk.DMPK-12-RG-075 |
| [26] |
Kiyohara C., Miyake Y., Koyanagi M., et al. Fukuoka Kinki Parkinson's Disease Study Group. MDR1 C3435T polymorphism and interaction with environmental factors in risk of Parkinson's disease: a case-control study in Japan // Drug Metabolism and Pharmacokinetics. 2013. Vol. 28, №2. P. 138-143. doi:10.2133/dmpk.DMPK-12-RG-075 |
| [27] |
Westerlund M, Belin AC, Olson L, et al. Expression of multi-drug resistance 1 mRNA in human and rodent tissues: reduced levels in Parkinson patients. Cell Tissue Research. 2008;334:179-85. doi: 10.1007/s00441-008-0686-5 |
| [28] |
Westerlund M., Belin A.C., Olson L., et al. Expression of multi-drug resistance 1 mRNA in human and rodent tissues: reduced levels in Parkinson patients // Cell Tissue Research. 2008. Vol. 334. P. 179-185. doi:10.1007/s00441-008-0686-5 |
| [29] |
Ahmed SSSJ, Husai RSA, Kumar S, et al. Association between MDR1 gene polymorphisms and Parkinson's disease in Asian and Caucasian populations: a meta-analysis. Journal of Neurological Sciences. 2016;368:255-62. doi:10.1016/j.jns.2016.07.041 |
| [30] |
Ahmed S.S.S.J., Husain R.S.A., Kumar S., et al. Association between MDR1 gene polymorphisms and Parkinson's disease in Asian and Caucasian populations: a meta-analysis // Journal of Neurolo-gical Sciences. 2016. Vol. 368. P. 255-262. doi: 10.1016/j.jns.2016.07.041 |
| [31] |
Kortecaas R, Leenders KL, van Oostrom JCH, et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Annals of Neurology. 2005; 57(2):176-9. doi:10.1002/ana.20369 |
| [32] |
Kortecaas R., Leenders K.L., van Oostrom J.C.H., et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo // Annals of Neurology. 2005. Vol. 57, №2. P. 176-179. doi:10.1002/ana.20369 |
| [33] |
Bartels AL, van Berckel BN, Lubberink M, et al. Blood-brain barrier P-glycoprotein function is not impaired in early Parkinson's disease. Parkinsonism &Relative Disorders. 2008;14(6):505-8. doi:10.1016/ j.parkreldis.2007.11.007 |
| [34] |
Bartels A.L., van Berckel B.N., Lubberink M., et al. Blood-brain barrier P-glycoprotein function is not impaired in early Parkinson's disease // Parkinsonism & Relative Disorders. 2008. Vol. 14, №6. P. 505-508. doi:10.1016/j.parkreldis.2007.11.007 |
| [35] |
Cannon JR, Tapias V, Mee NH, et al. A highly reproducible rotenone model of Parkinson's disease. Neurobiology of Disease. 2009;34(2):279-90. doi: 10.1016/j.nbd.2009.01.016 |
| [36] |
Cannon J.R., Tapias V., Mee N.H., et al. A highly reproducible rotenone model of Parkinson's disease // Neurobiology of Disease. 2009. Vol. 34, №2. P. 279-290. doi:10.1016/j.nbd.2009.01.016 |
| [37] |
Begley DJ. ABC transporters and the blood-brain barrier. Current Pharmaceutical Design. 2004;10(12): 1295-312. doi:10.2174/1381612043384844 |
| [38] |
Begley D.J. ABC transporters and the blood-brain barrier // Current Pharmaceutical Design. 2004. Vol. 10, №12. P. 1295-1312. doi: 10.2174/1381612043384844 |
| [39] |
Yakusheva EN, Shchulkin AV, Popova NM, et al. Structure, functions of P-glycoprotein and its role in rational pharmacotherapy. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(2):3-11. |
| [40] |
Якушева Е.Н., Щулькин А.В., Попова Н.М. и др. Структура, функции гликопротеина-Р и его значение для рациональной фармакотерапии // Обзоры по клинической фармакологии и лекарственной терапии. 2014. Т. 12, №2. С. 3-11. |
Chernykh I.V., Shchulkin A.V., Mylnikov P.Y., Gatsanoga M.V., Gradinar M.M., Yesenina A.S., Yakusheva E.N.
/
| 〈 |
|
〉 |