Three-dimensional reconstruction of substantia nigra pars compacta of human brain
Dmitriy N. Voronkov , Vladimir N. Salkov , Rudolf M. Khudoerkov
I.P. Pavlov Russian Medical Biological Herald ›› 2018, Vol. 26 ›› Issue (2) : 175 -183.
Three-dimensional reconstruction of substantia nigra pars compacta of human brain
Background. Up to the moment there is no universally accepted scheme of spatial organization of the groups of neurons of substantia nigra pars compacta of the human midbrain. A detailed study of the architectonics of this structure is necessary for pathomorphological analysis of agerelated changes in the nervous tissue and the associated neurodegenerative diseases with selective death of dopamine neurons.
Aim. To clarify the peculiarities of the morphochemical organization of the substantia nigra (SN) of a human brain and to create a threedimensional model of pars compacta.
Materials and Methods. Threedimensional reconstruction of substantia nigra pars compacta was performed on the brain autopsy material of individuals without neurological pathology (n=10, between 52 to 84 years of age) using a method of computed morphometry. Sections of the midbrain were stained by Nissl method and by an immunohistochemical method for localization of tyrosine hydroxylase – a marker of dopamine.
Results. In the SN pars compacta accumulations of neurons were identified in the form of 9 bands oriented in the rostrocaudal direction and including four areas: medial, lateral, dorsal and ventral. Morphometric analysis detected significant differences in the density of neurons and in expression of tyrosine hydroxylase between the areas of SN.
Conclusion. A model of cellular organization of SN pars compacta proposed by us on the basis of threedimensional reconstruction is characterized by a high degree of detalization as compared to similar works, and shows expressed spatial differentiation of the groups of neurons of SN which should be taken into consideration in pathomorphological examinations.
human brain / substantia nigra / midbrain / dopamine neurons / threedimensional reconstruction
| [1] |
Rudow G, O'Brien R, Savonenko AV, et al. Morphometry of the human substantia nigra in ageing and Parkinson's disease. Acta Neuropathol. 2008;115(4):46170. doi:10.1007/s00 40100803528 |
| [2] |
Rudow G., O'Brien R., Savonenko A.V., et al. Morphometry of the human substantia nigra in ageing and Parkinson's disease // Acta Neuropathol. 2008. Vol. 115, №4. P. 461470. doi: 10.1007/s0040100803528 |
| [3] |
Illarioshkin SN, Vlasenko AG, Fedotova EYu. Current means for identifying the latent stage of a neurodegenerative process. Annals of clinical and experimental neurology. 2013;2:3950. (In Russ). |
| [4] |
Иллариошкин С.Н., Власенко А.Г., Федотова Е.Ю. Современные возможности идентификации латентной стадии нейродегенеративного процесса // Анналы клинической и экспериментальной неврологии. 2013. Т. 7, №2. С. 3950. |
| [5] |
Hassler R. Zur Normalanatomie der Substantia nigra. Versuch einer architektonischen Gliederung. J Psychol Neurol. 1937;48:155. (In German). |
| [6] |
Hassler R. Zur Normalanatomie der Substantia nigra. Versuch einer architektonischen Gliederung // J. Psychol. Neurol. 1937. Vol. 48. P. 155. |
| [7] |
Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature. 1988;334:3458. |
| [8] |
Hirsch E., Graybiel A.M., Agid Y.A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease // Nature. 1988. Vol. 334. P. 345348. |
| [9] |
Damier P, Hirsch EС, Agid Y, et al. The substantia nigra of the human brain. Patterns of loss of dopaminecontaining neurons in Parkinson's disease. Brain. 1999;122:143748. doi:10.1093/brain/122.8.1437 |
| [10] |
Damier P., Hirsch E.С., Agid Y., et al. The substantia nigra of the human brain. II. Patterns of loss of dopaminecontaining neurons in Parkinson's disease // Brain. 1999. Vol. 122. P. 14371448. |
| [11] |
Ross GW, Petrovitch H, Abbott RD, et al. Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol. 2004;56:5329. doi:10.1002/ana.20226 |
| [12] |
Ross G.W., Petrovitch H., Abbott R.D., et al. Parkinsonian signs and substantia nigra neuron density in decendents elders without PD // Ann Neurol. 2004. Vol. 56. P. 532539. doi:10. 1093/brain/122.8.1437 |
| [13] |
Gaykema RP, Zaborszky L. Direct catecholaminergiccholinergic interactions in the basal forebrain. Substantia nigra – ventral tegmental area projections to cholinergic neurons. J Comp Neurol. 1996;374(4):55577. doi:10.1002/ (SICI)10969861(19961028)374:4<555::AIDCNE6>3.0.CO;20 |
| [14] |
Gaykema R.P., Zaborszky L. Direct catecholaminergiccholinergic interactions in the basal forebrain. II. Substantia nigra – ventral tegmental area projections to cholinergic neurons // J. Comp. Neurol. 1996. Vol. 374, №4. P. 555577. doi:10.1002/(SICI)10969861(19961028) 374:4<555::AIDCNE6>3.0.CO;20 |
| [15] |
Fu Y, Yuan Y, Halliday G, et al. A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Brain Struct Funct. 2012;217(2):591612. doi:10.1007/s0042901103492 |
| [16] |
Fu Y., Yuan Y., Halliday G., et al. A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse // Brain Struct. Funct. 2012. Vol. 217, №2. P. 591612. doi:10.1007/s0042901103492 |
| [17] |
Andrey P, Maurin Y. FreeD: an integrated environment for threedimensional reconstruction from serial sections. Journal of Neuroscience Methods. 2005;145:23344. doi:10.1016/ j.jneumeth.2005.01.006 |
| [18] |
Andrey P., Maurin Y. FreeD: an integrated environment for threedimensional reconstruction from serial sections // Journal of Neuroscience Methods. 2005. Vol. 145. P. 233244. doi:10.1007/s0042901103492 |
| [19] |
Khudoerkov RM. Metody komp'yuternoj morphometrii v nejromorphologii. Moscow: NCN; 2014. (In Russ). |
| [20] |
Худоерков Р.М. Методы компьютерной морфометрии в нейроморфологии. М.: НЦН; 2014. |
| [21] |
Khudoerkov RM, Voronkov DN, Dikalova YV. Quantitative morphochemical characterization of the neurons in substantia nigra of rat brain and its volume reconstruction. Bull Exp Biol Med. 2014;156(6):8614. (In Russ). doi:10.1007/ s1051701424708 |
| [22] |
Khudoerkov R.M., Voronkov D.N., Dikalova Y.V. Quantitative morphochemical characterization of the neurons in substantia nigra of rat brain and its volume reconstruction // Bull. Exp. Biol. Med. 2014. Vol. 156, №6. P. 861864. doi:10.1007/s1051701424708 |
| [23] |
Joel D, Weiner I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience. 2000;96(3):45174. doi: 10.1016/S03064522(99)005758 |
| [24] |
Joel D., Weiner I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum // Neuroscience. 2000. Vol. 96, №3. P. 451474. doi:10.1016/S03064522(99)005758 |
| [25] |
Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114:2283301. doi:10.1093/brain/ 114.5.2283 |
| [26] |
Fearnley J.M., Lees A.J. Ageing and Parkinson’s disease: substantia nigra regional selectivity // Brain. 1991. Vol. 114. P. 22832301. doi:10.1093/brain/114.5.2283 |
| [27] |
Damier P, Hirsch EС, Agid Y, et al. The substantia nigra of the human brain. Nigrosomes and nigral matrix, a compartmental organization based on calbindin D28k immunogistochemistry. Brain. 1999;122:142136. doi:10. 1093/brain/122.8.1421 |
| [28] |
Damier P., Hirsch E.С., Agid Y., et al. The substantia nigra of the human brain. Nigrosomes and nigral matrix, a compartmental organization based on calbindin D28k immunogistochemistry // Brain. 1999. Vol. 122. P. 14211436. doi:10.1093/brain/122.8.1421 |
| [29] |
Wakabayashi K, Mori F, Takahashi H. Progression patterns of neuronal loss and Lewy body pathology in the substantia nigra in Parkinson’s disease. Parkinsonism and Related Disorders. 2006;96:1338. doi:10.1016/j.parkreldis.2006.05.028 |
| [30] |
Wakabayashi K., Mori F., Takahashi H. Progression patterns of neuronal loss and Lewy body pathology in the substantia nigra in Parkinson’s disease // Parkinsonism and Related Disorders. 2006. Vol. 96. P. 133138. doi: 10.1016/j.parkreldis.2006.05.028 |
| [31] |
Brichta L, Greengard P. Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update. Front Neuroanat. 2014;8:152. doi:10.3389/fnana.2014.00152 |
| [32] |
Brichta L., Greengard P. Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update // Front Neuroanat. 2014. Vol. 8. P. 152. doi:10.3389/ fnana.2014.00152 |
| [33] |
Fu Y, Paxinos G, Watson C, et al. The substantia nigra and ventral tegmental dopaminergic neurons from development to degeneration. Journal of Chemical Neuroanatomy. 2016; 76:98107. doi:10.1016/j.jchemneu.2016.02.001 |
| [34] |
Fu Y., Paxinos G., Watson C., et al. The substantia nigra and ventral tegmental dopaminergic neurons from development to degeneration // Journal of Chemical Neuroanatomy. 2016. Vol. 76. P. 98107. doi:10.1016/j.jchemneu.2016.02.001 |
Voronkov D.N., Salkov V.N., Khudoerkov R.M.
/
| 〈 |
|
〉 |