Functional Capaсities of Limb Muscles in Patients with Partial Damage to the Cervical Spinal Cord

Anastasiya A. Kachesova , Elena N. Shchurova , Marat S. Sayfutdinov , Oksana G. Prudnikova

I.P. Pavlov Russian Medical Biological Herald ›› 2022, Vol. 30 ›› Issue (2) : 203 -212.

PDF (1091KB)
I.P. Pavlov Russian Medical Biological Herald ›› 2022, Vol. 30 ›› Issue (2) :203 -212. DOI: 10.17816/PAVLOVJ96752
Original study
research-article

Functional Capaсities of Limb Muscles in Patients with Partial Damage to the Cervical Spinal Cord

Author information +
History +
PDF (1091KB)

Abstract

INTRODUCTION: In the long-term course of traumatic spinal cord disease (TSCD), neuroplastic adaptive and maladaptive changes occurred on different structural levels of the nervous system, which leads to a shift in the activation and strength characteristics of the limb muscles. The standard neurological assessment is approximate; therefore, objective instrumental studies of the motor sphere of patients with partial damage to the cervical spinal cord have not lost their significance.

AIM: To study the activation and strength characteristics of the limb muscles of patients with partial injury of the cervical spinal cord in the long-term course of the disease (type B on the American Spinal Cord Injury Association (ASIA) scale).

MATERIALS AND METHODS: The study enrolled 28 patients with fractures of the cervical spinal cord vertebrae in the late period of the TSCD of ASIA type B. The amplitude of motor responses (M-responses) of the upper and lower limbs was assessed using electroneuromyography. The strength of the upper limb muscles was evaluated using manual dynamometers.

RESULTS: M-responses were absent in 9% and 64% in the upper and lower limbs, respectively. The amplitude of the most recorded M-responses of the upper and lower limb muscles was reduced relative to the norm. The reduction was not uniform, with significant differences in different leads. The average values of the amplitude asymmetry of M-responses did not exceed the norm. Moreover, 61% of the patients could perform hand-grip functions and hold the wrist dynamometer. Only 59% of the patients could make an effort and the results of strength measurement were obtained, whereas in 41% of cases, zero values were obtained. Statistical analyses revealed a clear relationship between the motor deficiency index of the upper limb and hand-grip strength.

CONCLUSION: The degree of preservation of M-responses and evident asymmetry of evoked electrical activities of the upper and lower limb muscles indicate the existence of a certain level of neurotrophic interaction in the “muscle fiber–motor neuron” system. The level of reduction of the hand-grip strength and its relationship with the motor deficiency index allows discussion about the partial preservation of the voluntary control of the motor function of the upper limbs.

Keywords

traumatic spinal cord disease / late period of partial damage to the cervical spinal cord / function of the limb muscles / muscle strength / M-response

Cite this article

Download citation ▾
Anastasiya A. Kachesova, Elena N. Shchurova, Marat S. Sayfutdinov, Oksana G. Prudnikova. Functional Capaсities of Limb Muscles in Patients with Partial Damage to the Cervical Spinal Cord. I.P. Pavlov Russian Medical Biological Herald, 2022, 30(2): 203-212 DOI:10.17816/PAVLOVJ96752

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mirzaeva L, Gilhus NE, Lobzin S, et al. Incidence of adult traumatic spinal cord injury in Saint Petersburg, Russia. Spinal Cord. 2019;57:692–9. doi: 10.1038/s41393-019-0266-4

[2]

Mirzaeva L., Gilhus N.E., Lobzin S., et al. Incidence of adult traumatic spinal cord injury in Saint Petersburg, Russia // Spinal Cord. 2019. Vol. 57. P. 692–699. doi: 10.1038/s41393-019-0266-4

[3]

Erokhin AN, Kobizev AE, Sergeenko OM, et al. Phrenic nerve stimulation in complex rehabilitation for cervical spinal cord injury using modified implantable device (case report). Genij Ortopedii. 2020;26(1):89–94. (In Russ). doi: 10.18019/1028- 4427-2020-26-1-89-94

[4]

Ерохин А.Н., Кобызев А.Е., Сергеенко О.М., и др. Стимуляция диафрагмального нерва посредством модифицированного имплантируемого устройства в комплексе реабилитационных мероприятий после повреждения шейного отдела спинного мозга (случай из практики) // Гений ортопедии. 2020. Т. 26, № 1. С. 89–94. doi: 10.18019/1028-4427-2020-26-1-89-94

[5]

Yilmaz U, Hellen P. Cervical spine trauma. Der Radiologe. 2016; 56(8):667–72. doi: 10.1007/s00117-016-0135-5

[6]

Yilmaz U., Hellen P. Cervical spine trauma // Der Radiologe. 2016. Vol. 56, № 8. P. 667–672. doi: 10.1007/s00117-016-0135-5

[7]

Li H–L, Xu H, Li Y–L, et al. Epidemiology of traumatic spinal cord injury in Tianjin, China: An 18-year retrospective study of 735 cases. The Journal of Spinal Cord Medicine. 2019;42(6):778–85. doi: 10.1080/10790268.2017.1415418

[8]

Li H.–L., Xu H., Li Y.–L., et al. Epidemiology of traumatic spinal cord injury in Tianjin, China: An 18-year retrospective study of 735 cases // The Journal of Spinal Cord Medicine. 2019. Vol. 42, № 6. P. 778–785. doi: 10.1080/10790268.2017.1415418

[9]

Burns AS, Marino RJ, Kalsi–Ryan S, et al. Type and Timing of Rehabilitation Following Acute and Subacute Spinal Cord Injury: A Systematic Review. Global Spine Journal. 2017;7(3 Suppl):175S–94S. doi: 10.1177/2192568217703084

[10]

Burns A.S., Marino R.J., Kalsi–Ryan S., et al. Type and Timing of Rehabilitation Following Acute and Subacute Spinal Cord Injury: A Systematic Review // Global Spine Journal. 2017. Vol. 7, № 3S. P. 175S–194S. doi: 10.1177/2192568217703084

[11]

Amelina OA; Makarov AYu, editor. Travma spinnogo mozga. Klinicheskaya nevrologiya s osnovami mediko-sotsial’noy ekspertizy. Saint-Petersburg: Zolotoy vek; 1998. P. 232–48. (In Russ).

[12]

Амелина О.А.; Макаров А.Ю., ред. Травма спинного мозга. Клиническая неврология с основами медико-социальной экспертизы. СПб.: ООО Золотой век; 1998. С. 232–248.

[13]

Ahuja CS, Nori S, Tetreault L, et al. Traumatic Spinal Cord Injury — Repair and Regeneration. Neurosurgery. 2017;80(3S):S9–22. doi: 10.1093/neuros/nyw080

[14]

Ahuja C.S., Nori S., Tetreault L., et al. Traumatic Spinal Cord Injury — Repair and Regeneration // Neurosurgery. 2017. Vol. 80, № 3S. P. S9–S22. doi: 10.1093/neuros/nyw080

[15]

Mulcahey MJ, Gaughan J, Betz RR, et al. Rater agreement on the ISNCSCI motor and sensory scores obtained before and after formal training in testing technique. The Journal of Spinal Cord Medicine. 2007;30 (Suppl 1):S146–9.

[16]

Mulcahey M.J., Gaughan J., Betz R.R., et al. Rater agreement on the ISNCSCI motor and sensory scores obtained before and after formal training in testing technique // The Journal of Spinal Cord Medicine. 2007. Vol. 30, Suppl. 1. P. S146–S149.

[17]

Schuld C, Franz S, Brüggemann K, et al. International standards for neurological classification of spinal cord injury: impact of the revised worksheet (revision 02/13) on classification performance. The Journal of Spinal Cord Medicine. 2016;39(5):504–12. doi: 10.1080/10790268.2016.1180831

[18]

Schuld C., Franz S., Brüggemann K., et al. International standards for neurological classification of spinal cord injury: impact of the revised worksheet (revision 02/13) on classification performance // The Journal of Spinal Cord Medicine. 2016. Vol. 39, № 5. P. 504–512. doi: 10.1080/10790268.2016.1180831

[19]

Shein AP, Krivoruchko GA, Ryabykh SO. Reactivity and resistance of the spinal structures during instrumental correction of spinal deformities. Russian Journal of Physiology. 2016;102(12):1495–506. (In Russ).

[20]

Шеин А.П., Криворучко Г.А., Рябых С.О. Реактивность и резистентность спинномозговых структур при выполнении инструментальной коррекции деформаций позвоночника // Российский физиологический журнал им. И.М. Сеченова. 2016. Т. 102, № 12. С. 1495–1506.

[21]

Shein AP, Sayfutdinov MS, Krivoruchko GA. Lokal’nyye i sistemnyye reaktsii sensomotornykh struktur na udlineniye i ishemiyu konechnostey. Kurgan: DAMMI; 2006. (In Russ).

[22]

Шеин А.П., Сайфутдинов М.С., Криворучко Г.А. Локальные и системные реакции сенсомоторных структур на удлинение и ишемию конечностей. Курган: ДАММИ; 2006.

[23]

Shein AP, Krivoruchko GA, Prudnikova OG. Electroneuromyographic assessment of the effectiveness of temporal epidural electroneurostimulation combined with robotic kinesiotherapy in the treatment of patients suffering from the consequences of spinal cord injury. Human Physiology. 2015;41(2):196–201. doi: 10.1134/S0362119715010132

[24]

Шеин А.П., Криворучко Г.А., Прудникова О.Г. Электронейромиографическая оценка эффективности временной эпидуральной электронейростимуляции в сочетании с роботизированной кинезотерапией при лечении больных с последствиями позвоночно-спинномозговой травмы // Физиология человека. 2015. Т. 41, № 2. С. 98–104. doi: 10.7868/S0131164615010130

[25]

Petersen JA, Wilm BJ, von Meyenburg J, et al. Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. Journal of Neurotrauma. 2012;29(8):1556–66. doi: 10.1089/neu.2011.2027

[26]

Petersen J.A., Wilm B.J., von Meyenburg J., et al. Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures // Journal of Neurotrauma. 2012. Vol. 29, № 8. P. 1556–1566. doi: 10.1089/neu.2011.2027

[27]

Van De Meent H, Hosman AJ, Hendriks J, et al. Severe degeneration of peripheral motor axons after spinal cord injury: a European multicenter study in 345 patients. Neurorehabilitation and Neural Repair. 2010;24(7):657–65. doi: 10.1177/1545968310368534

[28]

Van De Meent H., Hosman A.J., Hendriks J., et al. Severe degeneration of peripheral motor axons after spinal cord injury: a European multicenter study in 345 patients // Neurorehabilitation and Neural Repair. 2010. Vol. 24, № 7. P. 657–665. doi: 10.1177/1545968310368534

[29]

Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain. 2014;137(Pt 3):654–67. doi: 10.1093/brain/awt262

[30]

Dietz V., Fouad K. Restoration of sensorimotor functions after spinal cord injury // Brain. 2014. Vol. 137, Pt. 3. P. 654–667. doi: 10.1093/brain/awt262

[31]

Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. Journal of Neuroengineering and Rehabilitation. 2018;15(1):46. doi: 10.1186/s12984-018-0383-x

[32]

Gassert R., Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective // Journal of Neuroengineering and Rehabilitation. 2018. Vol. 15, № 1. P. 46. doi: 10.1186/s12984-018-0383-x

[33]

Brown AR, Martinez M. From cortex to cord: motor circuit plasticity after spinal cord injury. Neural Regeneration Research. 2019;14(12): 2054–62. doi: 10.4103/1673-5374.262572

[34]

Brown A.R., Martinez M. From cortex to cord: motor circuit plasticity after spinal cord injury // Neural Regeneration Research. 2019. Vol. 14, № 12. P. 2054–2062. doi: 10.4103/1673-5374.262572

[35]

Ozdemir RA, Perez MA. Afferent input and sensory function after human spinal cord injury. Journal of Neurophysiology. 2018;119(1):134–44. doi: 10.1152/jn.00354.2017

[36]

Ozdemir R.A., Perez M.A. Afferent input and sensory function after human spinal cord injury // Journal of Neurophysiology. 2018. Vol. 119, № 1. P. 134–144. doi: 10.1152/jn.00354.2017

[37]

Mohammed H, Hollis ER 2nd. Cortical Reorganization of Sensorimotor Systems and the Role of Intracortical Circuits After Spinal Cord Injury. Neurotherapeutics. 2018;15(3):588–603. doi: 10.1007/s13311-018-0638-z

[38]

Mohammed H., Hollis E.R. 2nd Cortical Reorganization of Sensorimotor Systems and the Role of Intracortical Circuits After Spinal Cord Injury // Neurotherapeutics. 2018. Vol. 15, № 3. P. 588–603. doi: 10.1007/s13311-018-0638-z

[39]

Zhenevskaya RP. Nervno-troficheskaya regulyatsiya plasticheskoy aktivnosti myshechnoy tkani. Moscow: Nauka; 1974. (In Russ).

[40]

Женевская Р.П. Нервно-трофическая регуляция пластической активности мышечной ткани. М.: Наука; 1974.

[41]

Kirshblum S, Snider B, Eren F, et al. Characterizing Natural Recovery after Traumatic Spinal Cord Injury. Journal of Neurotrauma. 2021;38(9):1267–84. doi: 10.1089/neu.2020.7473

[42]

Kirshblum S., Snider B., Eren F., et al. Characterizing Natural Recovery after Traumatic Spinal Cord Injury // Journal of Neurotrauma. 2021. Vol. 38, № 9. P. 1267–1284. doi: 10.1089/neu.2020.7473

PDF (1091KB)

204

Accesses

0

Citation

Detail

Sections
Recommended

/