Place of lipid theory in history of study of atherosclerosis
Stanislav N. Kotlyarov
I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (4) : 681 -689.
Place of lipid theory in history of study of atherosclerosis
INTRODUCTION: Despite the significant advances in the study of atherosclerosis in recent decades, the diseases associated with it still remain one of the leading problems of modern Western society. In the complicated history of the study of atherosclerosis, various theories have been proposed that attempted to explain its nature from positions of the scientific knowledge of those years.
АIM: To analyze the place of lipid disorders in various theories of atherogenesis that have been proposed in different historic periods and have shaped the current understanding of its nature and are the basis for future research.
The lipid theory, proposed more than a hundred years ago, is still the basis for the prevention and treatment of atherosclerosis. Subsequent findings on the role of endothelial dysfunction, on the importance of immune cells and innate immune mechanisms, and the importance of vascular hemodynamic disturbances, have shaped today's understanding of the pathogenesis of atherosclerosis, which regards it as a complex chain of immune and metabolic events occurring over many years and involving various cells of the vascular wall and the bloodstream. Much of the data on the pathogenesis of atherosclerosis obtained to date have no therapeutic application and are promising areas for future research.
CONCLUSION: The lipid theory of atherogenesis has passed a complicated way from understanding the role of lipids as a simple substrate for development of atherosclerosis to the fact of their performing complex immune and metabolic functions and being an important diagnostic and therapeutic target.
atherosclerosis / lipid theory / cholesterol / endothelial dysfunction / macrophages / innate immune system / lipid mediators
| [1] |
Kalinin RE, Suchkov IA, Кlimentova EA, et al. Biomarkers of Apoptosis and Cell Proliferation in Diagnosing the Progression of Atherosclerosis in Different Vascular Pools. I. P. Pavlov Russian Medical Biological Herald. 2022;30(2):243–52. (In Russ). doi: 10.17816/PAVLOVJ88938 |
| [2] |
Калинин Р.Е., Сучков И.А., Климентова Э.А., и др. Биомаркеры апоптоза и пролиферации клеток в диагностике прогрессирования атеросклероза в различных сосудистых бассейнах // Российский медико-биологический вестник имени академика И. П. Павлова. 2022. Т. 30, № 2. C. 243–252. doi: 10.17816/PAVLOVJ88938 |
| [3] |
Shevchenko YL, Borshchev GG, Ermakov DY, et al. Comparative Results of Standard Coronary Artery Bypass Grafting, Staged Hybrid Myocardial Revascularization and Purely Endovascular Correction in Patients with Coronary Artery Disease in Long-Term Period after Surgery. I. P. Pavlov Russian Medical Biological Herald. 2024;32(3):347–58. (In Russ). doi: 10.17816/PAVLOVJ632376 |
| [4] |
Шевченко Ю.Л., Борщев Г.Г., Ермаков Д.Ю., и др. Сравнительные результаты стандартного коронарного шунтирования, этапной гибридной реваскуляризации миокарда и сугубо эндоваскулярной коронарной коррекции у пациентов с ИБС в отдаленные сроки после операции // Российский медико-биологический вестник имени академика И. П. Павлова. 2024. Т. 32, № 3. C. 347–358. doi: 10.17816/PAVLOVJ632376 |
| [5] |
Kalinin RE, Suchkov IA, Pshennikov AS, et al. Dynamics of the Alterations of Cognitive Functions in Patients with Past Interventions on the Carotid System. I. P. Pavlov Russian Medical Biological Herald. 2022;30(2):261–70. (In Russ). doi: 10.17816/PAVLOVJ100037 |
| [6] |
Калинин Р.Е., Сучков И.А., Пшенников А.С., и др. Динамика изменения когнитивных функций у пациентов, перенесших вмешательства на каротидном бассейне // Российский медико-биологический вестник имени академика И. П. Павлова. 2022. Т. 30, № 2. C. 261–270. doi: 10.17816/PAVLOVJ100037 |
| [7] |
Zakeryaev AB, Vinogradov RA, Sukhoruchkin PV, et al. Predictors of Long-Term Complications of Femoropopliteal Bypass with Autovenous Graft. I. P. Pavlov Russian Medical Biological Herald. 2022;30(2):213–22. (In Russ). doi: 10.17816/PAVLOVJ96438 |
| [8] |
Закеряев А.Б., Виноградов Р.А., Сухоручкин П.В., и др. Предикторы отдаленных осложнений бедренно-подколенного шунтирования аутовенозным трансплантатом // Российский медико-биологический вестник имени академика И. П. Павлова. 2022. Т. 30, № 2. C. 213–222. doi: 10.17816/PAVLOVJ96438 |
| [9] |
Luca AC, David SG, David AG, et al. Atherosclerosis from Newborn to Adult — Epidemiology, Pathological Aspects, and Risk Factors. Life (Basel). 2023;13(10):2056. doi: 10.3390/life13102056 |
| [10] |
Luca A.C., David S.G., David A.G., et al. Atherosclerosis from Newborn to Adult — Epidemiology, Pathological Aspects, and Risk Factors // Life (Basel). 2023. Vol. 13, No. 10. P. 2056. doi: 10.3390/life13102056 |
| [11] |
Marchand F. Über Arteriosklerose. In: Von Leyden E, Pfeiffer E. Verhandlungen des Kongresses für Innere Medizin. Einundzwanzigster Kongress; Leipzig; 1904. Wiesbaden: Verlag von J. F. Bergmann; 1904. Vol. 18–21. P. 23–59. (In German). |
| [12] |
Marchand F. Über Arteriosklerose. In: Von Leyden E., Pfeiffer E. Verhandlungen des Kongresses für Innere Medizin. Einundzwanzigster Kongress; Leipzig; 1904. Wiesbaden: Verlag von J. F. Bergmann; 1904. Vol. 18–21. P. 23–59. |
| [13] |
Anitschkow N., Chalatow S. Ueber experimentelle Cholesterin-steatose und ihre Bedeutung fuer die Entstehung einiger pathologischer Prozesse. Zentrbl Allg Pathol. 1913;24:P. 1–9. (In German). |
| [14] |
Anitschkow N., Chalatow S. Über experimentelle Cholesterin-steatose und ihre Bedeutung für die Entstehung einiger pathologischer Prozesse // Zentrbl. Allg. Pathol. 1913. Vol. 24. P. 1–9. |
| [15] |
Ignatowski A. Über die Wirkung des tierischen Eiweißes auf die Aorta und die parenchymatösen Organe der Kaninchen. Virchows Arch Path Anat. 1909;198:248–70. (In German). doi: 10.1007/BF01949591 |
| [16] |
Ignatowski A. Über die Wirkung des tierischen Eiweißes auf die Aorta und die parenchymatösen Organe der Kaninchen // Virchows Arch. path Anat. 1909. Vol. 198. P. 248–270. doi: 10.1007/BF01949591 |
| [17] |
Anichkov NN. O mestakh osazhdeniya kolloidnykh substantsiy v organizme. Terapevticheskiy Arkhiv. 1925;3(1):19–26. (In Russ). |
| [18] |
Аничков Н.Н. О местах осаждения коллоидных субстанций в организме // Терапевтический архив. 1925. Т. 3, № 1. P. 19–26. |
| [19] |
Steinberg D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part I. J Lipid Res. 2004;45(9):1583–93. doi: 10.1194/jlr.r400003-jlr200 |
| [20] |
Steinberg D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part I // J. Lipid Res. 2004. Vol. 45, No. 9. P. 1583–1593. doi: 10.1194/jlr.r400003-jlr200 |
| [21] |
Püllmann A. [Feodor Lynen and Konrad Bloch. Nobel Prize winners for medicine and physiology, 1964]. Münch Med Wochenschr. 1965; 107(35):1666–9. |
| [22] |
Püllmann A. [Feodor Lynen and Konrad Bloch. Nobel Prize winners for medicine and physiology, 1964] // Münch. Med. Wochenschr. 1965. Vol. 107, No. 35. P. 1666–1669. |
| [23] |
Bloch K. The biological synthesis of cholesterol. Science. 1965; 150(3692):19–28. doi: 10.1126/science.150.3692.19 |
| [24] |
Bloch K. The biological synthesis of cholesterol // Science. 1965. Vol. 150, No. 3692. P. 19–28. doi: 10.1126/science.150.3692.19 |
| [25] |
Bucher NL, Overath P, Lynen F. Beta-Hydroxy-beta-methyl-glutaryl coenzyme A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver. Biochim Biophys Acta. 1960;40:491–501. doi: 10.1016/0006-3002(60)91390-1 |
| [26] |
Bucher N.L., Overath P., Lynen F. Beta-Hydroxy-beta-methyl-glutaryl coenzyme A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver // Biochim. Biophys. Acta. 1960. Vol. 40. P. 491–501. doi: 10.1016/0006-3002(60)91390-1 |
| [27] |
Gofman JW, Glazier F, Tamplin A, et al. Lipoproteins, coronary heart disease, and atherosclerosis. Physiol Rev. 1954;34(3):589–607. doi: 10.1152/physrev.1954.34.3.589 |
| [28] |
Gofman J.W., Glazier F., Tamplin A., et al. Lipoproteins, coronary heart disease, and atherosclerosis // Physiol. Rev. 1954. Vol. 34, No. 3. P. 589–607. doi: 10.1152/physrev.1954.34.3.589 |
| [29] |
Gofman JW, Lindgren FT, Elliott H. Ultracentrifugal studies of lipoproteins of human serum. J Biol Chem. 1949;179(2):973–9. |
| [30] |
Gofman J.W., Lindgren F.T., Elliott H. Ultracentrifugal studies of lipoproteins of human serum // J. Biol. Chem. 1949. Vol. 179, No. 2. P. 973–979. |
| [31] |
Gofman JW, Delalla O, Glazier F, et al. The serum lipoprotein transport system in health, metabolic disorders, atherosclerosis and coronary heart disease. J Clin Lipidol. 2007;1(2):104–41. doi: 10.1016/j.jacl.2007.03.001 |
| [32] |
Gofman J.W., Delalla O., Glazier F., et al. The serum lipoprotein transport system in health, metabolic disorders, atherosclerosis and coronary heart disease // J. Clin. Lipidol. 2007. Vol. 1, No. 2. P. 104–141. doi: 10.1016/j.jacl.2007.03.001 |
| [33] |
Steinberg D, Witztum JL. Oxidized Low-Density Lipoprotein and Atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30(12):2311–6. doi: 10.1161/atvbaha.108.179697 |
| [34] |
Steinberg D., Witztum J.L. Oxidized Low-Density Lipoprotein and Atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2010. Vol. 30, No. 12. P. 2311–2316. doi: 10.1161/atvbaha.108.179697 |
| [35] |
Endo A, Kuroda M, Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976;72(2):323–6. doi: 10.1016/0014-5793(76) 80996-9 |
| [36] |
Endo A., Kuroda M., Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity // FEBS Lett. 1976. Vol. 72, No. 2. P. 323–326. doi: 10.1016/0014-5793(76)80996-9 |
| [37] |
Kotlyarov SN, Kotlyarova AA. Role of lipid metabolism and systemic inflammation in the development of atherosclerosis in animal models. I. P. Pavlov Russian Medical Biological Herald. 2021;29(1):134–46. (In Russ). doi: 10.23888/PAVLOVJ2021291134-146 |
| [38] |
Котляров С.Н., Котлярова А.А. Сравнительная оценка роли липидного обмена и системного воспаления в развитии атеро-склероза на животных моделях // Российский медико-биологический вестник имени академика И. П. Павлова. 2021. Т. 29, № 1. C. 134–146. doi: 10.23888/PAVLOVJ2021291134-146 |
| [39] |
Alberts AW, Chen J, Kuron G, et al. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA. 1980;77(7):3957–61. doi: 10.1073/pnas.77.7.3957 |
| [40] |
Alberts A.W., Chen J., Kuron G., et al. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent // Proc. Natl Acad. Sci. USA. 1980. Vol. 77, No. 7. P. 3957–3961. doi: 10.1073/pnas.77.7.3957 |
| [41] |
Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175(4023):720–31. doi: 10.1126/science.175.4023.720 |
| [42] |
Singer S.J., Nicolson G.L. The fluid mosaic model of the structure of cell membranes // Science. 1972. Vol. 175, No. 4023. P. 720–731. doi: 10.1126/science.175.4023.720 |
| [43] |
Filippini A, D’Alessio A. Caveolae and Lipid Rafts in Endothelium: Valuable Organelles for Multiple Functions. Biomolecules. 2020;10(9): 1218. doi: 10.3390/biom10091218 |
| [44] |
Filippini A., D’Alessio A. Caveolae and Lipid Rafts in Endothelium: Valuable Organelles for Multiple Functions // Biomolecules. 2020. Vol. 10, No. 9. P. 1218. doi: 10.3390/biom10091218 |
| [45] |
Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988;27(17):6197–202. doi: 10.1021/bi00417a001 |
| [46] |
Simons K., van Meer G. Lipid sorting in epithelial cells // Biochemistry. 1988. Vol. 27, No. 17. P. 6197–6202. doi: 10.1021/bi00417a001 |
| [47] |
Matthaeus C, Taraska JW. Energy and Dynamics of Caveolae Trafficking. Front Cell Dev Biol. 2021;8:614472. doi: 10.3389/fcell.2020.614472 |
| [48] |
Matthaeus C., Taraska J.W. Energy and Dynamics of Caveolae Trafficking // Front. Cell Dev. Biol. 2021. Vol. 8. P. 614472. doi: 10.3389/fcell.2020.614472 |
| [49] |
Tran J, Magenau A, Rodriguez M, et al. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells. PLoS One. 2016;11(3):e0151556. doi: 10.1371/journal.pone.0151556 |
| [50] |
Tran J., Magenau A., Rodriguez M., et al. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells // PLoS One. 2016. Vol. 11, No. 3. P. e0151556. doi: 10.1371/journal.pone.0151556 |
| [51] |
Shaul PW. Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J Physiol. 2003;547(Pt 1):21–33. doi: 10.1113/jphysiol.2002.031534 |
| [52] |
Shaul P.W. Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis // J. Physiol. 2003. Vol. 547, Pt. 1. P. 21–33. doi: 10.1113/jphysiol.2002.031534 |
| [53] |
Krishna A, Sengupta D. Interplay between Membrane Curvature and Cholesterol: Role of Palmitoylated Caveolin-1. Biophys J. 2019; 116(1):69–78. doi: 10.1016/j.bpj.2018.11.3127 |
| [54] |
Krishna A., Sengupta D. Interplay between Membrane Curvature and Cholesterol: Role of Palmitoylated Caveolin-1 // Biophys. J. 2019. Vol. 116, No. 1. P. 69–78. doi: 10.1016/j.bpj.2018.11.3127 |
| [55] |
Mineo C, Shaul PW. Regulation of eNOS in caveolae. Adv Exp Med Biol. 2012;729:51–62. doi: 10.1007/978-1-4614-1222-9_4 |
| [56] |
Mineo C., Shaul P.W. Regulation of eNOS in caveolae // Adv. Exp. Med. Biol. 2012. Vol. 729. P. 51–62. doi: 10.1007/978-1-4614-1222-9_4 |
| [57] |
Li Q, Zhang Q, Wang M, et al. Eicosapentaenoic acid modifies lipid composition in caveolae and induces translocation of endothelial nitric oxide synthase. Biochimie. 2007;89(1):169–77. doi: 10.1016/j.biochi.2006.10.009 |
| [58] |
Li Q., Zhang Q., Wang M., et al. Eicosapentaenoic acid modifies lipid composition in caveolae and induces translocation of endothelial nitric oxide synthase // Biochimie. 2007. Vol. 89, No. 1. P. 169–177. doi: 10.1016/j.biochi.2006.10.009 |
| [59] |
Westerterp M, Tsuchiya K, Tattersall IW, et al. Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Endothelial Cells Accelerates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol. 2016;36(7):1328–37. doi: 10.1161/atvbaha.115.306670 |
| [60] |
Westerterp M., Tsuchiya K., Tattersall I.W., et al. Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Endothelial Cells Accelerates Atherosclerosis in Mice // Arterioscler. Thromb. Vasc. Biol. 2016. Vol. 36, No. 7. P. 1328–1337. doi: 10.1161/atvbaha.115.306670 |
| [61] |
Sinha B, Köster D, Ruez R, et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell. 2011;144(3):402–13. doi: 10.1016/j.cell.2010.12.031 |
| [62] |
Sinha B., Köster D., Ruez R., et al. Cells respond to mechanical stress by rapid disassembly of caveolae // Cell. 2011. Vol. 144, No. 3. P. 402–413. doi: 10.1016/j.cell.2010.12.031 |
| [63] |
Keren K. Cell motility: the integrating role of the plasma membrane. Eur Biophys J. 2011;40(9):1013–27. doi: 10.1007/s00249-011-0741-0 |
| [64] |
Keren K. Cell motility: the integrating role of the plasma membrane // Eur. Biophys. J. 2011. Vol. 40, No. 9. P. 1013–1027. doi: 10.1007/s00249-011-0741-0 |
| [65] |
Giddens DP, Zarins CK, Glagov S. The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis. J Biomech Eng. 1993;115(4B):588–94. doi: 10.1115/1.2895545 |
| [66] |
Giddens D.P., Zarins C.K., Glagov S. The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis // J. Biomech. Eng. 1993. Vol. 115, No. 4B. P. 588–594. doi: 10.1115/1.2895545 |
| [67] |
Cameron JN, Mehta OH, Michail M, et al. Exploring the relationship between biomechanical stresses and coronary atherosclerosis. Atherosclerosis. 2020;302:43–51. doi: 10.1016/j.athero sclerosis.2020.04.011 |
| [68] |
Cameron J.N., Mehta O.H., Michail M., et al. Exploring the relationship between biomechanical stresses and coronary atherosclerosis // Atherosclerosis. 2020. Vol. 302. P. 43–51. doi: 10.1016/j.atherosclerosis.2020.04.011 |
| [69] |
Gimbrone MA Jr, García–Cardeña G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. 2013;22(1):9–15. doi: 10.1016/j.carpath.2012.06.006 |
| [70] |
Gimbrone M.A. Jr., García–Cardeña G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis // Cardiovasc. Pathol. 2013. Vol. 22, No. 1. P. 9–15. doi: 10.1016/j.carpath.2012. 06.006 |
| [71] |
Fernandes DC, Araujo TLS, Laurindo FRM, et al. Chapter 7. Hemodynamic Forces in the Endothelium: From Mechanotransduction to Implications on Development of Atherosclerosis. In: Da Luz PL, Libby P, Laurindo FRM, et al., editors. Endothelium and Cardiovascular Diseases. Vascular Biology and Clinical Syndromes. Mica Haley, Sao Paolo: Academic Press; 2018. P. 85–95. doi: 10.1016/B978-0-12-812348-5.00007-6 |
| [72] |
Fernandes D.C., Araujo T.L.S., Laurindo F.R.M., et al. Chapter 7. Hemodynamic Forces in the Endothelium: From Mechanotransduction to Implications on Development of Atherosclerosis. In: Da Luz P.L., Libby P., Laurindo F.R.M., et al., editors. Endothelium and Cardio-vascular Diseases. Vascular Biology and Clinical Syndromes. Mica Haley, Sao Paolo: Academic Press; 2018. P. 85–95. doi: 10.1016/B978-0-12-812348-5.00007-6 |
| [73] |
Haidekker MA, L’Heureux N, Frangos JA. Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol. 2000;278(4):H1401–6. doi: 10.1152/ajpheart.2000.278.4.h1401 |
| [74] |
Haidekker M.A., L’Heureux N., Frangos J.A. Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence // Am. J. Physiol. Heart Circ. Physiol. 2000. Vol. 278, No. 4. P. H1401–H1406. doi: 10.1152/ajpheart.2000.278.4.h1401 |
| [75] |
Yamamoto K, Ando J. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases. J Cell Sci. 2013;126(Pt 5):1227–34. doi: 10.1242/jcs.119628 |
| [76] |
Yamamoto K., Ando J. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases // J. Cell Sci. 2013. Vol. 126, Pt. 5. P. 1227–1234. doi: 10.1242/jcs.119628 |
| [77] |
Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci. 2021;22(21):11545. doi: 10.3390/ijms222111545 |
| [78] |
Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology // Int. J. Mol. Sci. 2021. Vol. 22, No. 21. P. 11545. doi: 10.3390/ijms222111545 |
| [79] |
Serhan CN. Resolution Phase of Inflammation: Novel Endogenous Anti-Inflammatory and Proresolving Lipid Mediators and Pathways. Annu Rev Immunol. 2007;25:101–37. doi: 10.1146/annurev.immunol. 25.022106.141647 |
| [80] |
Serhan C.N. Resolution Phase of Inflammation: Novel Endogenous Anti-Inflammatory and Proresolving Lipid Mediators and Pathways // Annu. Rev. Immunol. 2007. Vol. 25. P. 101–137. doi: 10.1146/annurev.immunol.25.022106.141647 |
| [81] |
Kasikara C, Doran AC, Cai B, et al. The role of non-resolving inflammation in atherosclerosis. J Clin Invest. 2018;128(7):2713–23. doi: 10.1172/jci97950 |
| [82] |
Kasikara C., Doran A.C., Cai B., et al. The role of non-resolving inflammation in atherosclerosis // J. Clin. Invest. 2018. Vol. 128, No. 7. P. 2713–2723. doi: 10.1172/jci97950 |
| [83] |
Brezinski DA, Nesto RW, Serhan CN. Angioplasty triggers intracoronary leukotrienes and lipoxin A4. Impact of aspirin therapy. Circulation. 1992;86(1):56–63. doi: 10.1161/01.cir.86.1.56 |
| [84] |
Brezinski D.A., Nesto R.W., Serhan C.N. Angioplasty triggers intracoronary leukotrienes and lipoxin A4. Impact of aspirin therapy // Circulation. 1992. Vol. 86, No. 1. P. 56–63. doi: 10.1161/01.cir.86.1.56 |
| [85] |
Serhan CN, Jain A, Marleau S, et al. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J Clin Invest. 1996;98(10):2201–8. doi: 10.1172/jci119029 |
| [86] |
Shen J., Herderick E., Cornhill J.F., et al. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development // J. Clin. Invest. 1996. Vol. 98, No. 10. P. 2201–2208. doi: 10.1172/jci119029 |
| [87] |
Serhan CN, Jain A, Marleau S, et al. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J Immunol. 2003;171(12):6856–65. doi: 10.4049/jimmunol.171.12.6856 |
| [88] |
Serhan C.N., Jain A., Marleau S., et al. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators // J. Immunol. 2003. Vol. 171, No. 12. P. 6856–6865. doi: 10.4049/jimmunol.171.12.6856 |
Kotlyarov SN
/
| 〈 |
|
〉 |