Role of Transforming Growth Factor-β in Pathogenesis of Pulmonary Fibrosis in COVID-19, Post-COVID Syndrome, Oncological and Chronic Inflammatory Lung Diseases
Andrey V. Budnevsky , Sergey N. Avdeev , Evgeny S. Ovsyannikov , Viktoria V. Shishkina , Nadezhda G. Alekseeva , Inna M. Perveeva , Avag G. Kitoyan , Lyubov N. Antakova , Anastasia S. Yurchenko
I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (3) : 499 -510.
Role of Transforming Growth Factor-β in Pathogenesis of Pulmonary Fibrosis in COVID-19, Post-COVID Syndrome, Oncological and Chronic Inflammatory Lung Diseases
INTRODUCTION: Persistent post-COVID syndrome is the persistent physical, medical and cognitive sequelae of coronavirus disease 2019 (COVID-19), including persistent immunosuppression, pulmonary, cardiac and vascular fibrosis which lead to increased mortality and impair the quality of life of patients.
АIM: To analyze the completed foreign and domestic studies on the pathophysiology of transforming growth factor-β (TGF-β) in conditions of COVID-19, post-COVID syndrome, oncological and chronic inflammatory lung diseases.
Mast cells are among the main producers of inflammatory cytokines in COVID-19, their stimulation leads to the release of many proinflammatory cytokines, such as interleukin 1β, tumor necrosis factor α, interleukin 6, and also TGF-β. The basis of the pathogenesis of post-COVID syndrome is the overexpression of TGF-β leading to a prolonged state of immunosuppression and fibrosis. TGF-β acts as a tumor suppressor inhibiting proliferation and inducing apoptosis in the early stages of oncogenesis; plays an important role in most cellular biological processes leading to remodeling of the airway structures; is involved in epithelial changes, in subepithelial fibrosis, remodeling of smooth muscle of airways and in microvascular changes; induces resistance to glucocorticosteroids; stimulates the production of blood coagulation factor XII, thereby leading to development of potentially fatal complications, such as pulmonary embolism and ischemic stroke.
CONCLUSION: In this literature review, a structured analysis of a multicomponent role of TGF-β in the pathogenesis of post-COVID syndrome, pulmonary fibrosis in COVID-19, tumors of respiratory system, chronic obstructive pulmonary disease, bronchial asthma, is given. A possible use of TGF-β as a biomarker of severe and moderate degree of COVID-19 is substantiated.
transforming growth factor β / COVID-19 / mast cells / chronic obstructive pulmonary disease / tumors
| [1] |
Oronsky B, Larson C, Hammond TC, et al. A Review of Persistent Post-COVID Syndrome (PPCS). Clin Rev Allergy immunol. 2023;64(1): 66–74. doi: 10.1007/s12016-021-08848-3 |
| [2] |
Oronsky B., Larson C., Hammond T.C., et al. A Review of Persistent Post-COVID Syndrome (PPCS) // Clin. Rev. Allergy Immunol. 2023. Vol. 64, No. 1. P. 66–74. doi: 10.1007/s12016-021-08848-3 |
| [3] |
Walkey AJ, Summer R, Ho V, et al. Acute respiratory distress syndrome: epidemiology and management approaches. Clin Epidemiol. 2012;4:159–69. doi: 10.2147/clep.s288000 |
| [4] |
Walkey A.J., Summer R., Ho V., et al. Acute respiratory distress syndrome: epidemiology and management approaches // Clin. Epidemiol. 2012. Vol. 4. P. 159–169. doi: 10.2147/clep.s28800 |
| [5] |
Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS?. Am J Physiol Lung Cell Mol Physiol. 2014;306(3):L217–30. doi: 10.1152/ajplung.00311.2013 |
| [6] |
Williams A.E., Chambers R.C. The mercurial nature of neutrophils: still an enigma in ARDS? // Am. J. Physiol. Lung Cell. Mol. Physiol. 2014. Vol. 306, No. 3. P. L217–L230. doi: 10.1152/ajplung.00311.2013 |
| [7] |
Burnham EL, Janssen WJ, Riches DW, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J. 2014;43(1):276–85. doi: 10.1183/09031936.00196412 |
| [8] |
Burnham E.L., Janssen W.J., Riches D.W., et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance // Eur. Respir. J. 2014. Vol. 43, No. 1. P. 276–285. doi: 10.1183/09031936.00196412 |
| [9] |
Wismans LV, Lopuhaä B, de Koning W, et al. Increase of mast cells in COVID-19 pneumonia may contribute to pulmonary fibrosis and thrombosis. Histopathology. 2023;82(3):407–19. doi: 10.1111/his.14838 |
| [10] |
Wismans L.V., Lopuhaä B., de Koning W., et al. Increase of mast cells in COVID-19 pneumonia may contribute to pulmonary fibrosis and thrombosis // Histopathology. 2023. Vol. 82, No. 3. Р. 407–419. doi: 10.1111/his.14838 |
| [11] |
David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol. 2018;19(7): 419–35. doi: 10.1038/s41580-018-0007-0 |
| [12] |
David C.J., Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer // Nat. Rev. Mol. Cell Biol. 2018. Vol. 19, No. 7. P. 419–435. doi: 10.1038/s41580-018-0007-0 |
| [13] |
Saito A, Horie M, Nagase T. TGF-β Signaling in Lung Health and Disease. Int J Mol Sci. 2018;19(8):2460. doi: 10.3390/ijms190824600 |
| [14] |
Saito A., Horie M., Nagase T. TGF-β Signaling in Lung Health and Disease // Int. J. Mol. Sci. 2018. Vol. 19, No. 8. P. 2460. doi: 10.3390/ijms19082460 |
| [15] |
Shi M, Zhu J, Wang R, et al. Latent TGF-β structure and activation. Nature. 2011;474(7351):343–9. doi: 10.1038/nature10152 |
| [16] |
Shi M., Zhu J., Wang R., et al. Latent TGF-β structure and activation // Nature. 2011. Vol. 474, No. 7351. P. 343–349. doi: 10.1038/nature10152 |
| [17] |
Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 2008;1782(4):197–228. doi: 10.1016/j.bbadis.2008.01.006 |
| [18] |
Gordon K.J., Blobe G.C. Role of transforming growth factor-beta superfamily signaling pathways in human disease // Biochim. Biophys. Acta. 2008. Vol. 1782, No. 4. P. 197–228. doi: 10.1016/j.bbadis.2008.01.006 |
| [19] |
Kanzaki T, Olofsson A, Morén A, et al. TGF-beta 1 binding protein: a component of the large latent complex of TGF-beta 1 with multiple repeat sequences. Cell. 1990;61(6):1051–61. doi: 10.1016/0092-8674(90)90069-q |
| [20] |
Kanzaki T., Olofsson A., Morén A., et al. TGF-beta 1 binding protein: A component of the large latent complex of TGF-beta 1 with multiple repeat sequences // Cell. 1990. Vol. 61, No. 6. P. 1051–1061. doi: 10.1016/0092-8674(90)90069-q |
| [21] |
Minton K. Extracellular matrix: Preconditioning the ECM for fibrosis. Nat Rev Mol Cell Biol. 2014;15(12):766–7. doi: 10.1038/nrm3906 |
| [22] |
Minton K. Extracellular matrix: Preconditioning the ECM for fibrosis // Nat. Rev. Mol. Cell Biol. 2014. Vol. 15, No. 12. P. 766–767. doi: 10.1038/nrm3906 |
| [23] |
Xu P, Liu J, Derynck R. Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett. 2012;586(14):1871–84. doi: 10.1016/j.febslet.2012.05.010 |
| [24] |
Xu P., Liu J., Derynck R. Post-translational regulation of TGF-β receptor and Smad signaling // FEBS Lett. 2012. Vol. 586, No. 14. P. 1871–1884. doi: 10.1016/j.febslet.2012.05.010 |
| [25] |
Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30. doi: 10.1038/nrm3434 |
| [26] |
Massagué J. TGFβ signalling in context // Nat. Rev. Mol. Cell Biol. 2012. Vol. 13, No. 10. P. 616–630. doi: 10.1038/nrm3434 |
| [27] |
Muppala S, Xiao R, Krukovets I, et al. Thrombospondin-4 mediates TGF-β-induced angiogenesis. Oncogene. 2017;36(36):5189–98. doi: 10.1038/onc.2017.140 |
| [28] |
Muppala S., Xiao R., Krukovets I., et al. Thrombospondin-4 mediates TGF-β-induced angiogenesis // Oncogene. 2017. Vol. 36, No. 36. P. 5189–5198. doi: 10.1038/onc.2017.140 |
| [29] |
Robertson IB, Horiguchi M, Zilberberg L, et al. Latent TGF-β-binding proteins. Matrix Biol. 2015;47:44–53. doi: 10.1016/j.matbio.2015.05.005 |
| [30] |
Robertson I.B., Horiguchi M., Zilberberg L., et al. Latent TGF-β-binding proteins // Matrix Biol. 2015. Vol. 47. P. 44–53. doi: 10.1016/j.matbio.2015.05.005 |
| [31] |
Moustakas A, Heldin C–H. Non-Smad TGF-beta signals. J Cell Sci. 2005;118(Pt 16):3573–84. doi: 10.1242/jcs.02554 |
| [32] |
Moustakas A., Heldin C.–H. Non-Smad TGF-beta signals // J. Cell Sci. 2005. Vol. 118, Pt. 16. P. 3573–3584. doi: 10.1242/jcs.02554 |
| [33] |
Galvão F Jr, Grokoski KC, da Silva BB, et al. The amyloid precursor protein (APP) processing as a biological link between Alzheimer's disease and cancer. Ageing Res Rev. 2019;49:83–91. doi: 10.1016/j.arr.2018.11.007 |
| [34] |
Galvão F. Jr., Grokoski K.C., da Silva B.B., et al. The amyloid precursor protein (APP) processing as a biological link between Alzheimer's disease and cancer // Ageing Res. Rev. 2019. Vol. 49. P. 83–91. doi: 10.1016/j.arr.2018.11.007 |
| [35] |
Johnson HE, Toettcher JE. Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo. Dev Cell. 2019;48(3):361–70.e3. doi: 10.1016/j.devcel.2019.01.009 |
| [36] |
Johnson H.E., Toettcher J.E. Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo // Dev. Cell. 2019. Vol. 48, № 3. P. 361–370.e3. doi: 10.1016/j.devcel.2019.01.009 |
| [37] |
Böhmer RM. IL-3-dependent early erythropoiesis is stimulated by autocrine transforming growth factor beta. Stem Cells. 2004;22(2): 216–24. doi: 10.1634/stemcells.22-2-216 |
| [38] |
Böhmer R.M. IL-3-dependent early erythropoiesis is stimulated by autocrine transforming growth factor beta // Stem Cells. 2004. Vol. 22, No. 2. P. 216–224. doi: 10.1634/stemcells.22-2-216 |
| [39] |
Jinnin M, Ihn H, Tamaki K. Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-beta1-induced extracellular matrix expression. Mol Pharmacol. 2006;69(2):597–607. doi: 10.1124/mol.105.017483 |
| [40] |
Jinnin M., Ihn H., Tamaki K. Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-beta1-induced extracellular matrix expression // Mol. Pharmacol. 2006. Vol. 69, No. 2. P. 597–607. doi: 10.1124/mol.105.017483 |
| [41] |
Ota K, Quint P, Weivoda MM, et al. Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone. 2013;57(1):68–75. doi: 10.1016/j.bone.2013.07.023 |
| [42] |
Ota K., Quint P., Weivoda M.M., et al. Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors // Bone. 2013. Vol. 57, No. 1. P. 68–75. doi: 10.1016/j.bone.2013.07.023 |
| [43] |
Batra V, Musani AI, Hastie AT, et al. Bronchoalveolar lavage fluid concentrations of transforming growth factor (TGF)-beta1, TGF-beta2, interleukin (IL)-4 and IL-13 after segmental allergen challenge and their effects on alpha-smooth muscle actin and collagen III synthesis by primary human lung fibroblasts. Clin Exp Allergy. 2004;34(3): 437–44. doi: 10.1111/j.1365-2222.2004.01885.x |
| [44] |
Batra V., Musani A.I., Hastie A.T., et al. Bronchoalveolar lavage fluid concentrations of transforming growth factor (TGF)-beta1, TGF-beta2, interleukin (IL)-4 and IL-13 after segmental allergen challenge and their effects on alpha-smooth muscle actin and collagen III synthesis by primary human lung fibroblasts // Clin. Exp. Allergy. 2004. Vol. 34, No. 3. P. 437–444. doi: 10.1111/j.1365-2222.2004.01885.x |
| [45] |
Chiang C–H, Chuang C–H, Liu S–L. Transforming growth factor-β1 and tumor necrosis factor-α are associated with clinical severity and airflow limitation of COPD in an additive manner. Lung. 2014;192(1): 95–102. doi: 10.1007/s00408-013-9520-2 |
| [46] |
Chiang C.–H., Chuang C.–H., Liu S.–L. Transforming growth factor-β1 and tumor necrosis factor-α are associated with clinical severity and airflow limitation of COPD in an additive manner // Lung. 2014. Vol. 192, No. 1. P. 95–102. doi: 10.1007/s00408-013-9520-2 |
| [47] |
Hinz B. The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol. 2015;47:54–65. doi: 10.1016/j.matbio.2015.05.006 |
| [48] |
Hinz B. The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship // Matrix Biol. 2015. Vol. 47. P. 54–65. doi: 10.1016/j.matbio.2015.05.006 |
| [49] |
Brown SD, Baxter KM, Stephenson ST, et al. Airway TGF-β1 and oxidant stress in children with severe asthma: association with airflow limitation. J Allergy Clin Immunol. 2012;129(2):388–96.e1-8. doi: 10.1016/j.jaci.2011.11.037 |
| [50] |
Brown S.D., Baxter K.M., Stephenson S.T., et al. Airway TGF-β1 and oxidant stress in children with severe asthma: association with airflow limitation // J. Allergy Clin. Immunol. 2012. Vol. 129, No. 2. P. 388–396.e1-8. doi: 10.1016/j.jaci.2011.11.037 |
| [51] |
Harris WT, Muhlebach MS, Oster RA, et al. Transforming growth factor-beta(1) in bronchoalveolar lavage fluid from children with cystic fibrosis. Pediatr Pulmonol. 2009;44(11):1057–64. doi: 10.1002/ppul.21079 |
| [52] |
Harris W.T., Muhlebach M.S., Oster R.A., et al. Transforming growth factor-beta(1) in bronchoalveolar lavage fluid from children with cystic fibrosis // Pediatr. Pulmonol. 2009. Vol. 44, No. 11. P. 1057–1064. doi: 10.1002/ppul.21079 |
| [53] |
Thomas BJ, Kan-O K, Loveland KL, et al. In the Shadow of Fibrosis: Innate Immune Suppression Mediated by Transforming Growth Factor-β. Am J Respir Cell Mol Biol. 2016;55(6):759–66. doi: 10.1165/rcmb.2016-0248ps |
| [54] |
Thomas B.J., Kan-O K., Loveland K.L., et al. In the Shadow of Fibrosis: Innate Immune Suppression Mediated by Transforming Growth Factor-β // Am. J. Respir. Cell Mol. Biol. 2016. Vol. 55, No. 6. P. 759–766. doi: 10.1165/rcmb.2016-0248ps |
| [55] |
Matsumoto K, Inoue H. Viral infections in asthma and COPD. Respir Investig. 2014;52(2):92–100. doi: 10.1016/j.resinv.2013.08.005 |
| [56] |
Matsumoto K., Inoue H. Viral infections in asthma and COPD // Respir. Investig. 2014. Vol. 52, No. 2. P. 92–100. doi: 10.1016/j.resinv.2013.08.005 |
| [57] |
Xia YC, Radwan A, Keenan CR, et al. Glucocorticoid Insensitivity in Virally Infected Airway Epithelial Cells Is Dependent on Transforming Growth Factor-β Activity. PLoS Pathog. 2017;13(1):e1006138. doi: 10.1371/journal.ppat.1006138 |
| [58] |
Xia Y.C., Radwan A., Keenan C.R., et al. Glucocorticoid Insensitivity in Virally Infected Airway Epithelial Cells Is Dependent on Transforming Growth Factor-β Activity // PLoS Pathog. 2017. Vol. 13, No. 1. P. e1006138. doi: 10.1371/journal.ppat.1006138 |
| [59] |
Korkut A, Zaidi S, Kanchi RS, et al. A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily. Cell Syst. 2018;7(4):422–37.e7. doi: 10.1016/j.cels.2018.08.010 |
| [60] |
Korkut A., Zaidi S., Kanchi R.S., et al. A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily // Cell Syst. 2018. Vol. 7, No. 4. P. 422–437.e7. doi: 10.1016/j.cels.2018.08.010 |
| [61] |
Cortez VS, Ulland TK, Cervantes–Barragan L, et al. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat Immunol. 2017;18(9):995–1003. doi: 10.1038/ni.3809 |
| [62] |
Cortez V.S., Ulland T.K., Cervantes–Barragan L., et al. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling // Nat. Immunol. 2017. Vol. 18, No. 9. P. 995–1003. doi: 10.1038/ni.3809 |
| [63] |
Wang Y, Chu J, Yi P, et al. SMAD4 promotes TGF-β-independent NK cell homeostasis and maturation and antitumor immunity. J Clin Invest. 2018;128(11):5123–36. doi: 10.1172/jci121227 |
| [64] |
Wang Y., Chu J., Yi P., et al. SMAD4 promotes TGF-β-independent NK cell homeostasis and maturation and antitumor immunity // J. Clin. Invest. 2018. Vol. 128, No. 11. P. 5123–5136. doi: 10.1172/jci121227 |
| [65] |
Frey B, Rückert M, Deloch L, et al. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev. 2017;280(1):231–48. doi: 10.1111/imr.12572 |
| [66] |
Frey B., Rückert M., Deloch L., et al. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases // Immunol. Rev. 2017. V ol. 280, No. 1. P. 231–248. doi: 10.1111/imr.12572 |
| [67] |
Wang E–Y, Chen H, Sun B–Q, et al. Serum levels of the IgA isotype switch factor TGF-β1 are elevated in patients with COVID-19. FEBS Lett. 2021;595(13):1819–24. doi: 10.1002/1873-3468.14104 |
| [68] |
Wang E.–Y., Chen H., Sun B.–Q., et al. Serum levels of the IgA isotype switch factor TGF-β1 are elevated in patients with COVID-19 // FEBS Lett. 2021. Vol. 595, No. 13. P. 1819–1824. doi: 10.1002/1873-3468.14104 |
| [69] |
Chen W. A potential treatment of COVID-19 with TGF-β blockade. Int J Biol Sci. 2020;16(11):1954–5. doi: 10.7150/ijbs.46891 |
| [70] |
Chen W. A potential treatment of COVID-19 with TGF-β blockade // Int. J. Biol. Sci. 2020. Vol. 16, No. 11. P. 1954–1955. doi: 10.7150/ijbs.46891 |
| [71] |
Budnevsky AV, Ovsyannikov ES, Shishkina VV, et al. Possible Unexplored Aspects of Covid-19 Pathogenesis: The Role of Carboxypeptidase A3. International Journal of Biomedicine. 2022;12(2):179–82. doi: 10.21103/Article12(2)_RA1 |
| [72] |
Budnevsky A.V., Ovsyannikov E.S., Shishkina V.V., et al. Possible Unexplored Aspects of COVID-19 Pathogenesis: The Role of Carboxypeptidase A3 // International Journal of Biomedicine. 2022. Vol. 12, No. 2. P. 179–182. doi: 10.21103/Article12(2)_RA1 |
| [73] |
Budnevsky AV, Ovsyannikov ES, Tokmachev RE, et al. The role of mast cells in the pathogenesis of COVID-19. Pakistan Journal of Medical & Health Sciences. 2022;16(06):422–4. doi: 10.53350/pjmhs22166422 |
| [74] |
Budnevsky A.V., Ovsyannikov E.S., Tokmachev R.E., et al. The role of mast cells in the pathogenesis of COVID-19 // Pakistan Journal of Medical & Health Sciences. 2022. Vol. 16, No. 06. P. 422–424. doi: 10.53350/pjmhs22166422 |
| [75] |
Delpino MV, Quarleri J. SARS-CoV-2 Pathogenesis: Imbalance in the Renin-Angiotensin System Favors Lung Fibrosis. Front Cell Infect Microbiol. 2020;10:340. doi: 10.3389/fcimb.2020.00340 |
| [76] |
Delpino M.V., Quarleri J. SARS-CoV-2 Pathogenesis: Imbalance in the Renin-Angiotensin System Favors Lung Fibrosis // Front. Cell. Infect. Microbiol. 2020. Vol. 10. P. 340. doi: 10.3389/fcimb.2020.00340 |
| [77] |
Ongchai S, Somnoo O, Kongdang P, et al. TGF-β1 upregulates the expression of hyaluronan synthase 2 and hyaluronan synthesis in culture models of equine articular chondrocytes. J Vet Sci. 2018; 19(6):735–43. doi: 10.4142/jvs.2018.19.6.735 |
| [78] |
Ongchai S., Somnoo O., Kongdang P., et al. TGF-β1 upregulates the expression of hyaluronan synthase 2 and hyaluronan synthesis in culture models of equine articular chondrocytes // J. Vet. Sci. 2018. Vol. 19, No. 6. P. 735–743. doi: 10.4142/jvs.2018.19.6.735 |
| [79] |
Shi Y, Wang Y, Shao C, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27(5):1451–4. doi: 10.1038/s41418-020-0530-3 |
| [80] |
Shi Y., Wang Y., Shao C., et al. COVID-19 infection: the perspectives on immune responses // Cell Death Differ. 2020. Vol. 27, No. 5. P. 1451–1454. doi: 10.1038/s41418-020-0530-3 |
| [81] |
Debuc B, Smadja DM. Is COVID-19 a New Hematologic Disease? Stem Cell Rev Rep. 2021;17(1):4–8. doi: 10.1007/s12015-020-09987-4 |
| [82] |
Debuc B., Smadja D.M. Is COVID-19 a New Hematologic Disease? // Stem Cell Rev. Rep. 2021. Vol. 17, No. 1. P. 4–8. doi: 10.1007/s12015-020-09987-4 |
| [83] |
Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1–13. doi: 10.1016/j.trsl.2020.04.007 |
| [84] |
Magro C., Mulvey J.J., Berlin D., et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases // Transl. Res. 2020. Vol. 220. P. 1–13. doi: 10.1016/j.trsl.2020.04.007 |
| [85] |
Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. doi: 10.1016/j.thromres.2020.04.024 |
| [86] |
Lodigiani C., Iapichino G., Carenzo L., et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy // Thromb. Res. 2020. Vol. 191. P. 9–14. doi: 10.1016/j.thromres.2020.04.024 |
| [87] |
Renné T, Stavrou EX. Roles of Factor XII in Innate Immunity. Front Immunol. 2019;10:2011. doi: 10.3389/fimmu.2019.02011 |
| [88] |
Renné T., Stavrou E.X. Roles of Factor XII in Innate Immunity // Front. Immunol. 2019. Vol. 10. P. 2011. doi: 10.3389/fimmu.2019.02011 |
| [89] |
Göbel K, Eichler S, Wiendl H, et al. The Coagulation Factors Fibrinogen, Thrombin, and Factor XII in Inflammatory Disorders — A Systematic Review. Front Immunol. 2018;9:1731. doi: 10.3389/fimmu.2018.01731 |
| [90] |
Göbel K., Eichler S., Wiendl H., et al. The Coagulation Factors Fibrinogen, Thrombin, and Factor XII in Inflammatory Disorders — A Systematic Review // Front. Immunol. 2018. Vol. 9. P. 1731. doi: 10.3389/fimmu.2018.01731 |
| [91] |
Zhou F, Yu T, Du R, et al Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2022;10:1054–62. doi: 10.1016/s0140-6736(20)30566-3 |
| [92] |
Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study // Lancet. 2020. Vol. 395, No. 10229. P. 1054–1062. doi: 10.1016/s0140-6736(20)30566-3 |
| [93] |
Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020;58(7):1116–20. doi: 10.1515/cclm-2020-0188 |
| [94] |
Han H., Yang L., Liu R., et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection // Clin. Chem. Lab. Med. 2020. Vol. 58, No. 7. P. 1116–1120. doi: 10.1515/cclm-2020-0188 |
| [95] |
Rovina N, Akinosoglou K, Eugen–Olsen J, et al. Soluble urokinase plasminogen activator receptor (suPAR) as an early predictor of severe respiratory failure in patients with COVID-19 pneumonia. Crit Care. 2020;24(1):187. doi: 10.1186/s13054-020-02897-4 |
| [96] |
Rovina N., Akinosoglou K., Eugen–Olsen J., et al. Soluble urokinase plasminogen activator receptor (suPAR) as an early predictor of severe respiratory failure in patients with COVID-19 pneumonia // Crit. Care. 2020. Vol. 24, No. 1. P. 187. doi: 10.1186/s13054-020-02897-4 |
| [97] |
Overed–Sayer C, Rapley L, Mustelin T, et al. Are mast cells instrumental for fibrotic diseases? Front Pharmacol. 2014;4:174. doi: 10.3389/fphar.2013.00174 |
| [98] |
Overed–Sayer C., Rapley L., Mustelin T., et al. Are mast cells instrumental for fibrotic diseases? // Front. Pharmacol. 2014. Vol. 4. P. 174. doi: 10.3389/fphar.2013.00174 |
| [99] |
Budnevsky AV, Avdeev SN, Ovsyannikov ES, et al. The role of mast cells and their proteases in lung damage associated with COVID-19. Pulmonologiya. 2023;33(1):17–26. (In Russ). doi: 10.18093/0869-0189-2023-33-1-17-26 |
| [100] |
Будневский А.В., Авдеев С.Н., Овсянников Е.С., и др. Роль тучных клеток и их протеаз в поражении легких у пациентов с COVID-19 // Пульмонология. 2023. Т. 33, № 1. С. 17–26. doi: 10.18093/0869-0189-2023-33-1-17-26 |
| [101] |
Budnevsky AV, Avdeev SN, Kosanovic D, et al. Role of mast cells in the pathogenesis of severe lung damage in COVID-19 patients. Respir Res. 2022;23(1):371. doi: 10.1186/s12931-022-02284-3 |
| [102] |
Budnevsky A.V., Avdeev S.N., Kosanovic D., et al. Role of mast cells in the pathogenesis of severe lung damage in COVID-19 patients // Respir. Res. 2022. Vol. 23, No. 1. P. 371. doi: 10.1186/s12931022-02284-3 |
Eco-Vector
/
| 〈 |
|
〉 |