Change in Walking Parameters of Paralympic Athletes Diagnosed with Cerebral Palsy Using WALKBOT Training System at Recovery Stage of Rehabilitation
Viktor V. Gorelik , Svetlana N. Filippova , Oleg S. Smentyna , Liliana S. Revchuk , Yana V. Davydova
I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (2) : 263 -272.
Change in Walking Parameters of Paralympic Athletes Diagnosed with Cerebral Palsy Using WALKBOT Training System at Recovery Stage of Rehabilitation
INTRODUCTION: The publication is devoted to studying the rehabilitative effect of the Walkbot innovative training system on restoring the walking function in Paralympic athletes diagnosed with cerebral palsy (CP). The novelty of the developed Walkbot robot-assisted training system (TS) and insufficient experience of its use in rehabilitation practice require investigations on contingents of patients with musculoskeletal disorders in CP to develop protocols and programs of the rehabilitation use of the Walkbot TS.
AIM: Study of effectiveness of rehabilitation use of the Walkbot robotic TS to restore the walking function in Paralympic athletes with spastic cerebral palsy.
MATERIALS AND METHODS: The study was conducted at the Medical Rehabilitation Center ‘Sergievskie Mineral Waters’ in 2023. Forty Paralympic athletes (all men) aged 30-35 years were examined. The experimental group (EG) and control group (CG) included 20 Paralympic athletes each with standardization of the groups by the main parameters. The classes were conducted for 60 minutes according to the rehabilitation program. In the experimental group, besides exercise therapy (ET), the participants also exercised on the robotic Walkbot TS to restore the walking function, namely, they used Go world game with the known tasks symbolizing counties of the world, Go palace game that permits to take a walk around the palace, when patients move to the right or left as they choose; Go undersea game occurring against the background of a fairy sea world where they must go through the route controlling the direction of movement. The Paralympians of the control group used the standard rehabilitation program including ET with no training and gaming technologies.
RESULTS: The obtained results showed a pronounced improvement in the parameters of motor actions in Paralympians of the EG, while in the CG, positive rehabilitation changes were 2–3 times less expressed. At the initial and final rehabilitation stages, an increase of the tolerated duration of classes was recorded: by 5 times in the EG and 3 times in the CG, post-rehabilitation increase in the EG was 23.4% compared to that in CG. After training on the Walkbot TS, the volume of the performed load increased 5.9 times in the EG and 2.1 times in the CG. The increase in the EG made 64.5% compared to the CG, which indicated an increase in speed-strength qualities and endurance of para-athletes. At the end of rehabilitation, the amount of steps on the Walkbot TS in the EG increased 5.9 times (in the CG — 2.9 times), increase in the EG made 48.3% compared to the CG.
CONCLUSION: The experiment established a complex multisided positive effect of training sessions on the Walkbot TS in the EG versus the effect of only exercise therapy in the CG. The obtained data suggest that training on the Walkbot TS confer a significant restorative and normalizing effect on the neurophysiological mechanisms of functioning of the central parts of the motor cortex.
Paralympic athletes / CP / rehabilitation / training system / Walkbot / musculoskeletal apparatus
| [1] |
Abutalimov ASh. The influence of bio-controlled mechanotherapy on dynamometric parameters of the knee joint muscle apparatus of highly qualified athletes. Resort Medicine. 2023;(3):15–9. (In Russ). doi: 10.51871/2304-0343_2023_3_15 |
| [2] |
Абуталимов А.Ш. Влияние биоуправляемой механотерапии на динамометрические показатели мышечного аппарата коленного сустава высококвалифицированных легкоатлетов // Курортная медицина. 2023. № 3. С. 15–19. doi: 10.51871/2304-0343_2023_3_15 |
| [3] |
Ignatova TS, Ikoeva GA, Kolbin VE, et al. Effectiveness evaluation of translingual neurostimulation in motor rehabilitation in children with spastic diplegia. Pediatric Traumatology, Orthopaedics and Reconstruc-tive Surgery. 2019;7(2):17–24. (In Russ). doi: 10.17816/PTORS7217-24 |
| [4] |
Игнатова Т.С., Икоева Г.А., Колбин В.Е., и др. Оценка эффективности транслингвальной нейростимуляции в двигательной реабилитации у детей со спастической диплегией // Ортопедия, травматология и восстановительная хирургия детского возраста. 2019. Т. 7, № 2. С. 17–24. doi: 10.17816/PTORS7217-24 |
| [5] |
Ikoeva GA, Kivoenko OI, Polozenko OD. Use of robot-driven mechanotherapy in children with the cerebral palsy after complex ortopedical and surgical treatment. Pediatric Neurosurgery and Neurology. 2012;(4):32–6. (In Russ). |
| [6] |
Икоева Г.А., Кивоенко О.И., Полозенко О.Д. Роботизированная механотерапия в реабилитации детей с церебральным параличом после комплексного ортопедо-хирургического лечения // Неврология и нейрохирургия детского возраста. 2012. № 4 (34). С. 32–36. |
| [7] |
Achkasov EE, Mashkovskiy EV, Bezuglov EN, et al. Medical-biological aspects of recovery in professional and amateur sports. Medical News of North Caucasus. 2018;13(1.1):126–32. (In Russ). doi: 10.14300/mnnc.2018.13035 |
| [8] |
Ачкасов Е.Е., Машковский Е.В., Безуглов Э.Н., и др. Медико-биологические аспекты восстановления в профессиональном и любительском спорте // Медицинский вестник Северного Кавказа. 2018. Т. 13, № 1.1. С. 126–132. doi: 10.14300/mnnc.2018.13035 |
| [9] |
Bashkin VM. Correction of training loading with burdening on the basis of the functional condition of the nervously-muscular device of sportsmen. Vestnik Sankt-Peterburgskogo universiteta Ministerstva Vnutrennikh Del Rossii. 2009;(2):180–4. (In Russ). |
| [10] |
Башкин В.М. Коррекция тренировочной нагрузки с отягощениями на основе функционального состояния нервно-мышечного аппарата спортсменов // Вестник Санкт-Петербургского университета МВД России. 2009. № 2 (42). С. 180–184. |
| [11] |
Belokopytova SV. Robotizirovannaya mekhanoterapiya v neyro-reabilitatsii dlya vosstanovleniya funktsii khod’by. In: Meditsina i zdravookhraneniye: materialy III Mezhdunarodnoy nauchnoy konfe-rentsii; Kazan’, 20–23 May 2015. Kazan’: Buk; 2015. P. 97–8. (In Russ). |
| [12] |
Белокопытова С.В. Роботизированная механотерапия в нейрореабилитации для восстановления функции ходьбы. В сб.: Медицина и здравоохранение: материалы III Международной научной конференции; Казань, 20–23 мая 2015 г. Казань: Бук; 2015. С. 97–98. |
| [13] |
Ikoeva GA, Nikityuk IE, Kivoenko OI, et al. Clinical, neurological, and neurophysiological evaluation of the efficiency of motor rehabilitation in children with cerebral palsy using robotic mechanotherapy and transcutaneous electrical stimulation of the spinal cord. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2016;4(4):47–55. (In Russ). doi: 10.17816/PTORS4447-55 |
| [14] |
Икоева Г.А., Никитюк И.Е., Кивоенко О.И., и др. Клинико-неврологическая и нейрофизиологическая оценка эффективности двигательной реабилитации у детей с церебральным параличом при использовании роботизированной механотерапии и чрескожной электрической стимуляции спинного мозга // Ортопедия, травматология и восстановительная хирургия детского возраста. 2016. Т. 4, № 4. С. 47–55. doi: 10.17816/PTORS4447-55 |
| [15] |
Kuznetsov AN. Robotizirovannyye tekhnologii vosstanovleniya funktsii khod’by v neyroreabilitatsii. Moscow: RAES; 2010. (In Russ). |
| [16] |
Кузнецов А.Н. Роботизированные технологии восстановления функции ходьбы в нейрореабилитации. М.: РАЕН; 2010. |
| [17] |
Vitenko YuE, Medvedeva EN, Levenkov AE. Use of physical exercises in suspension systems for recovery of highly qualified athletes with myofascial disorders. Uchenye Zapiski Universiteta imeni P.F. Lesgafta. 2021;(7):45–9. (In Russ). doi: 10.34835/issn.2308-1961.2021.7.p45-49 |
| [18] |
Витенко Ю.Э., Медведева Е.Н., Левенков А.Е. Использование физических упражнений в подвесных системах для восстановления высококвалифицированных спортсменов с миофасциальными нарушениями // Ученые записки университета им. П.Ф. Лесгафта. 2021. № 7 (197). С. 45–49. doi: 10.34835/issn.2308-1961.2021.7.p45-49 |
| [19] |
Fedorov SS. Vyyavleniye metodov vosstanovleniya sportsmenov posle travm oporno-dvigatel’nogo apparata. In: Gulyayev GYu, editor. Sovremennoye obrazovaniye: aktual’nyye voprosy, dostizheniya i innovatsii: sbornik statey XII Mezhdunarodnoy nauchno-prakticheskoy konferentsii; Penza, 20 December 2017. Penza: Nauka i Prosveshcheniye; 2017. P. 144–6. (In Russ). |
| [20] |
Федоров С.С. Выявление методов восстановления спортсменов после травм опорно-двигательного аппарата. В сб.: Гуляев Г.Ю., ред. Современное образование: актуальные вопросы, достижения и инновации: сборник статей XII Международной научно-практической конференции; Пенза, 20 декабря 2017 г. Пенза: Наука и Просвещение; 2017. С. 144–146. |
| [21] |
Costill DL. The 1985 C. H. McCloy Research Lecture Practical Problems in Exercise Physiology Research. Res Q Exer Sport. 1985; 56(4):378–84. doi: 10.1080/02701367.1985.10605344 |
| [22] |
Costill D.L. The 1985 C. H. McCloy Research Lecture Practical Problems in Exercise Physiology Research // Res. Q. Exer. Sport. 1985. Vol. 56, No. 4. P. 378–384. doi: 10.1080/02701367.1985.10605344 |
| [23] |
Gorelik VV, Filippova SN, Belyaev VS, et al. Efficiency of image visualization simulator technology for physical rehabilitation of children with cerebral palsy through play. Vestnik RGMU. 2019;(4):42–9. (In Russ). doi: 10.24075/vrgmu.2019.051 |
| [24] |
Горелик В.В., Филиппова С.Н., Беляев В.С., и др. Эффективность тренажерной технологии визуализации образов в игровой деятельности для двигательной реабилитации детей с детским церебральным параличом // Вестник РГМУ. 2019. № 4. С. 42–49. doi: 10.24075/vrgmu.2019.051 |
| [25] |
Yoo JW, Lee DR, Cha YJ, et al. Augmented effects of EMG biofeedback interfaced with virtual reality on neuro-muscular control and movement coordination during reaching in children with cerebral palsy. NeuroRehabilitation. 2017;40(2):175–85. doi: 10.3233/nre-161402 |
| [26] |
Yoo J.W., Lee D.R., Cha Y.J., et al. Augmented effects of EMG biofeedback interfaced with virtual reality on neuro-muscular control and movement coordination during reaching in children with cerebral palsy // NeuroRehabilitation. 2017. Vol. 40, No. 2. P. 175–185. doi: 10.3233/nre-161402 |
| [27] |
Bjornson K, Zhou C, Fatone S, et al. The Effect of Ankle Foot Orthoses on Community Based Walking in Cerebral Palsy: A Clinical Pilot Study. Pediatr Phys Ther. 2016;28(2):179–86. doi: 10.1097/pep.0000000000000242 |
| [28] |
Bjornson K., Zhou C., Fatone S., et al. The Effect of Ankle Foot Orthoses on Community Based Walking in Cerebral Palsy: A Clinical Pilot Study // Pediatr. Phys. Ther. 2016. Vol. 28, No. 2. P. 179–186. doi: 10.1097/pep.0000000000000242 |
| [29] |
Hilderley AJ, Fehlings D, Lee GW, et al. Comparison of a robotic-assisted gait training program with a functional gait training program for children with cerebral palsy: design and methods of a two-arm randomized controlled crossover trial. Springerplus. 2016;5(1):1886. doi: 10.1186/s40064-016-3535-0 |
| [30] |
Hilderley A.J., Fehlings D., Lee G.W., et al. Comparison of a robotic-assisted gait training program with a functional gait training program for children with cerebral palsy: design and methods of a two-arm randomized controlled crossover trial // Springerplus. 2016. Vol. 5, No. 1. P. 1886. doi: 10.1186/s40064-016-3535-0 |
| [31] |
Van Kammen K, Boonstra A, Reinders–Messelink H, et al. Combined effects of body weight support and walking speed on gait-related muscle activity: a comparison of Lokomat exoskeleton walking and conventional treadmill walking. PLoS One. 2014;9(9): e107323. doi: 10.1371/journal.pone.0107323 |
| [32] |
Van Kammen K., Boonstra A., Reinders–Messelink H., et al. Combined effects of body weight support and walking speed on gait-related muscle activity: a comparison of Lokomat exoskeleton walking and conventional treadmill walking // PLoS One. 2014. Vol. 9, No. 9. P. e107323. doi: 10.1371/journal.pone.0107323 |
| [33] |
Fox EL, Bowers RW, Foss ML. The physiological basis for exercise and sport. 5th ed. Philadelphia: Saunders; 1993. |
| [34] |
Fox E.L., Bowers R.W., Foss M.L. The physiological basis for exercise and sport. 5th ed. Philadelphia: Saunders; 1993. |
| [35] |
Hasan Z, Enoka RM, Stuart DG. The interface between biomechanics and neurophysiology in the study of movement: Some recent approaches. Exer Sport Sci Rev. 1985;13:169–234. |
| [36] |
Hasan Z., Enoka R.M., Stuart D.G. The interface between biomechanics and neurophysiology in the study of movement: Some recent approaches // Exer. Sport Sci. Rev. 1985. Vol. 13. P. 169–234. |
| [37] |
Roy RR, Baldwin KM, Edgerton VR. The plasticity of skeletal muscle: Effects of neuromuscular activity. Exer Sport Sci Rev. 1991;19:269–312. |
| [38] |
Roy R.R., Baldwin K.M., Edgerton V.R. The plasticity of skeletal muscle: Effects of neuromuscular activity // Exer. Sport Sci. Rev. 1991. Vol. 19. P. 269–312. |
| [39] |
Sale DG. Influence of exercise and training on motor unit activation. Exer Sport Sci Rev. 1987;15:95–151. |
| [40] |
Sale D.G. Influence of exercise and training on motor unit activation // Exer. Sport Sci. Rev. 1987. Vol. 15. P. 95–151. |
| [41] |
Fedoseev AV, Alpatov AV, Chekushin AA, et al. Remote monitoring of rehabilitation for travmatological and orthopedic patients. Nauka Molodykh (Eruditio Juvenium). 2020;8(2):296–302. (In Russ). doi: 10.23888/HMJ202082296-302 |
| [42] |
Федосеев А.В., Алпатов А.В., Чекушин А.А., и др. Удалённый мониторинг реабилитации пациентов травматолого-ортопедического профиля // Наука молодых (Eruditio Juvenium). 2020. Т. 8, № 2. С. 296–302. doi: 10.23888/HMJ202082296-302 |
| [43] |
Sheyko GE, Belova AN. Predictors of the Effectiveness of Medical Rehabilitation of Patients with Cerebral Palsy. I. P. Pavlov Russian Medical Biological Herald. 2022;30(1):75–86. (In Russ). doi: 10.17816/PAVLOVJ71608 |
| [44] |
Шейко Г.Е., Белова А.Н. Предикторы эффективности медицинской реабилитации пациентов с детским церебральным параличом // Российский медико-биологический вестник им. академика И. П. Пав- лова. 2022. Т. 30, № 1. C. 75–86. doi: 10.17816/PAVLOVJ71608 |
Eco-Vector
/
| 〈 |
|
〉 |