Molecular mechanisms of antimicrobial defense strategy of bacterial cell
Anna V. Lutsenko , Anna L. Yasenyavskaya , Marina A. Samotrueva
I.P. Pavlov Russian Medical Biological Herald ›› 2025, Vol. 33 ›› Issue (1) : 133 -144.
Molecular mechanisms of antimicrobial defense strategy of bacterial cell
INTRODUCTION: Solution to the problem of antibiotic resistance (ABR) and the continuing spread of multidrug resistant strains is a strategic task of practical healthcare. An important tool for improving antimicrobial pharmacotherapy, along with active search for new effective drug compounds, can be a detailed investigation of the prime cause of the emergence and effect of the extracellular environment on the molecular mechanisms of bacterial resistance to chemotherapeutic drugs.
AIM: Analysis of the literature devoted to the molecular mechanisms of antimicrobial defense strategy of the bacterial cell against the effect of medical drugs, and to promising strategies of combating antibiotic-resistant agents.
MATERIALS AND METHODS: A search and analysis of the scientific literature was conducted in PubMed, eLibrary, Europe PMC, WoS, CyberLeninka and other databases for the last 5 years. The search queries included the following word combinations: for Russian-language publications the problem of ABR, environmental factors of antibiotic sensitivity, resistance mechanisms, resistance genes, mobile genetic elements; for English-language publications: antibiotic resistance evolution, antibiotic resistance genes, antibiotic resistance in biofilms, transmission of antibiotic resistance. A total of 100 literature sources published from 2018 to 2022 have been analyzed, of which 44 were included in the review.
An analysis of domestic and foreign sources showed that a significant role in the development of ABR in microorganisms is assigned to enzymatic beta-lactamase activity, specific protective proteins of microorganisms, as well as the ability of pathogenic strains to form biofilms. Besides, according to the results of studies, the main source of resistance genes is the environment, where the transfer of ABR genes between representatives of different bacterial taxa occurs. Promising areas in the fight against antibiotic-resistant pathogens are mathematical modeling, synthetic biology, phage therapy.
CONCLUSION: In modern studies, the tendency of microorganisms to ABR presents a serious evolutionary and ecological problem. The uncontrolled and unjustified current use of antibacterial drugs in medicine, veterinary medicine and agriculture provoked the activation of the mechanisms of bacterial cell defense known by the moment, and caused enhancement of the adaptive capacity of bacterial pathogens and spread of multidrug resistant strains. The review also provides data on various strategies aimed at solving the ABR problem.
antibacterial agents / drug resistance / beta-lactamases / phage therapy / biofilms / antibiotic-resistant strains / efflux pumps / MfpA target molecule / transposable genetic elements / ribosomal proteins
| [1] |
Uddin TM, Chakraborty AJ, Khusro A, et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health. 2021;14(12):1750–66. doi: 10.1016/j.jiph.2021.10.020 |
| [2] |
Uddin T.M., Chakraborty A.J., Khusro A., et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects // J. Infect. Public Health. 2021. Vol. 14, No. 12. P. 1750–1766. doi: 10.1016/j.jiph.2021.10.020 |
| [3] |
Zubareva VD, Sokolova OV, Bezborodova NA, et al. Molecular mechanisms and genetic determinants of resistance to antibacterial drugs in microorganisms (review). Agricultural Biology. 2022;57(2):237–56. (In Russ). doi: 10.15389/agrobiology.2022.2.237eng |
| [4] |
Зубарева В.Д., Соколова О.В., Безбородова Н.А., и др. Молекулярные механизмы и генетические детерминанты устойчивости к антибактериальным препаратам у микроорганизмов // Сельскохозяйственная биология. 2022. Т. 57, № 2. С. 237–256. doi: 10.15389/agrobiology.2022.2.237rus |
| [5] |
Larsson DGJ, Flach C–F. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20(5):257–69. doi: 10.1038/s41579-021-00649-x |
| [6] |
Larsson D.G.J., Flach C.–F. Antibiotic resistance in the environment // Nat. Rev. Microbiol. 2022. Vol. 20, No. 5. P. 257–269. doi: 10.1038/s41579-021-00649-x |
| [7] |
Davidovich NV, Solovieva NV, Bashilova EN, et al. Endoecological Aspects of Antibiotic Resistance: A Literature Review. Human Ecology. 2020;27(5):31–6. (In Russ). doi: 10.33396/1728-0869-2020-5-31-36 |
| [8] |
Давидович Н.В., Соловьева Н.В., Башилова Е.Н., и др. Эндо-экологические аспекты устойчивости к антибиотикам: обзор литературы // Экология человека. 2020. Т. 27, № 5. С. 31–36. doi: 10.33396/1728-0869-2020-5-31-36 |
| [9] |
Starikova AA, Gabitova NM, Tsibizova AA, et al. Study of antimicrobial activity of new Quinazolin-4(3n)-one derivatives with respect to Echerichia coli and Klebsiella pnevmoniae. Astrakhan Medical Journal. 2022;17(1):60–71. (In Russ). doi: 10.48612/agmu/2022.17.1.60.71 |
| [10] |
Старикова А.А., Габитова Н.М., Цибизова А.А., и др. Изучение антимикробной активности новых производных хиназолин-4(3н)-она по отношению к Echerichia coli и Klebsiella pnevmoniae // Астраханский медицинский журнал. 2022. Т. 17, № 1. С. 60–71. doi: 10.48612/agmu/2022.17.1.60.71 |
| [11] |
Taggar G, Attiq Rehman M, Boerlin P, et al. Molecular Epidemiology of Carbapenemases in Enterobacteriales from Humans, Animals, Food and the Environment. Antibiotics (Basel). 2020;9(10):693. doi: 10.3390/antibiotics9100693 |
| [12] |
Taggar G., Attiq Rehman M., Boerlin P., et al. Molecular Epidemiology of Carbapenemases in Enterobacteriales from Humans, Animals, Food and the Environment // Antibiotics (Basel). 2020. Vol. 9, No. 10. P. 693. doi: 10.3390/antibiotics9100693 |
| [13] |
Wilson DN, Hauryliuk V, Atkinson GC, et al. Target protection as a key antibiotic resistance mechanism. Nat Rev Microbiol. 2020;18(11):637–48. doi: 10.1038/s41579-020-0386-z |
| [14] |
Wilson D.N., Hauryliuk V., Atkinson G.C., et al. Target protection as a key antibiotic resistance mechanism // Nat. Rev. Microbiol. 2020. Vol. 18, No. 11. P. 637–648. doi: 10.1038/s41579-020-0386-z |
| [15] |
Shur KV, Bekker OB, Zaichikova MV, et al. Genetic Aspects of Mycobacterium tuberculosis Drug Resistance and Virulence. Russian Journal of Genetics. 2018;54(12):1363–75. (In Russ). doi: 10.1134/S0016675818120147 |
| [16] |
Шур К.В., Беккер О.Б., Зайчикова М.В., и др. Генетические аспекты лекарственной устойчивости и вирулентности Mycobacterium tuberculosis // Генетика. 2018. Т. 54, № 12. С. 1363–1375. doi: 10.1134/S0016675818120147 |
| [17] |
Zemlyanko OM, Rogoza TM, Zhouravleva GA. Mechanisms of bacterial multiresistance to antibiotics. Ecological Genetics. 2018; 16(3):4–17. (In Russ). doi: 10.17816/ecogen1634-17 |
| [18] |
Землянко О.М., Рогоза Т.М., Журавлева Г.А. Механизмы множественной устойчивости бактерий к антибиотикам // Экологическая генетика. 2018. T. 16, № 3. С. 4–17. doi: 10.17816/ecogen1634-17 |
| [19] |
Felker IG, Gordeeva EI, Stavitskaya NV, et al. Prospects and Obstacles for Clinical Use of the Inhibitors of Mycobacterium tuberculosis Efflux Pumps. Biologicheskiye Membrany. Zhurnal Membrannoy i Kletochnoy Biologii. 2021;38(5):317–39. (In Russ). doi: 10.31857/S0233475521050054 |
| [20] |
Фелькер И.Г., Гордеева И.Е., Ставицкая Н.В., и др. Перспективы и препятствия для клинического применения ингибиторов эффлюксных помп Mycobacterium tuberculosis // Биологические мембраны. Журнал мембранной и клеточной биологии. 2021. Т. 38, № 5. С. 317–339. doi: 10.31857/S0233475521050054 |
| [21] |
Gun MA, Bozdogan B, Coban AY. Tuberculosis and beta-lactam antibiotics. Future Microbiol. 2020;15(10):937–44. doi: 10.2217/fmb-2019-0318 |
| [22] |
Gun M.A., Bozdogan B., Coban A.Y. Tuberculosis and beta-lactam antibiotics // Future Microbiol. 2020. Vol. 15, No. 10. P. 937–944. doi: 10.2217/fmb-2019-0318 |
| [23] |
Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy. 2021;41(2):220–33. doi: 10.1002/phar.2505 |
| [24] |
Fratoni A.J., Nicolau D.P., Kuti J.L. A guide to therapeutic drug monitoring of β-lactam antibiotics // Pharmacotherapy. 2021. Vol. 41, No. 2. P. 220–233. doi: 10.1002/phar.2505 |
| [25] |
Ibrahim ME, Abbas M, Al-Shahrai AM, et al. Phenotypic Characterization and Antibiotic Resistance Patterns of Extended-Spectrum β-Lactamase- and AmpC β-Lactamase-Producing Gram-Negative Bacteria in a Referral Hospital, Saudi Arabia. Can J Infect Dis Med Microbiol. 2019;2019:6054694. doi: 10.1155/2019/6054694 |
| [26] |
Ibrahim M.E., Abbas M., Al-Shahrai A.M., et al. Phenotypic Characterization and Antibiotic Resistance Patterns of Extended-Spectrum β-Lactamase- and AmpC β-Lactamase-Producing Gram-Negative Bacteria in a Referral Hospital, Saudi Arabia // Can. J. Infect. Dis. Med. Microbiol. 2019. Vol. 2019. P. 6054694. doi: 10.1155/2019/6054694 |
| [27] |
Philippon A, Jacquier H, Ruppé E, et al. Structure-based classification of class A beta-lactamases, an update. Curr Res Transl Med. 2019;67(4):115–22. doi: 10.1016/j.retram.2019.05.003 |
| [28] |
Philippon A., Jacquier H., Ruppé E., et al. Structure-based classification of class A beta-lactamases, an update // Curr. Res. Transl. Med. 2019. Vol. 67, No. 4. P. 115–122. doi: 10.1016/j.retram.2019.05.003 |
| [29] |
Tulara NK. Nitrofurantoin and Fosfomycin for Extended Spectrum Beta-lactamases Producing Escherichia coli and Klebsiella pneumonia. J Glob Infect Dis. 2018;10(1):19–21. doi: 10.4103/jgid.jgid_72_17 |
| [30] |
Tulara N.K. Nitrofurantoin and Fosfomycin for Extended Spectrum Beta-lactamases Producing Escherichia coli and Klebsiella pneumonia // J. Glob. Infect. Dis. 2018. Vol. 10, No. 1. P. 19–21. doi: 10.4103/jgid.jgid_72_17 |
| [31] |
Ero R, Yan X–F, Gao Y–G. Ribosome Protection Proteins — “New” Players in the Global Arms Race with Antibiotic-Resistant Pathogens. Int J Mol Sci. 2021;22(10):5356. doi: 10.3390/ijms22105356 |
| [32] |
Ero R., Yan X.–F., Gao Y.–G. Ribosome Protection Proteins — “New” Players in the Global Arms Race with Antibiotic-Resistant Pathogens // Int. J. Mol. Sci. 2021. Vol. 22, No. 10. Р. 5356. doi: 10.3390/ijms22105356 |
| [33] |
Khryanin AA. Microbial Biofilms: Modern Concepts. Antibiotics and Chemotherapy. 2020;65 5-6):70–7. (In Russ). doi: 10.37489/0235-2990-2020-65-5-6-70-77 |
| [34] |
Хрянин А.А. Биоплёнки микроорганизмов: современные представления // Антибиотики и Химиотерапия. 2020. Т. 65, № 5-6. С. 70–77. doi: 10.37489/0235-2990-2020-65-5-6-70-77 |
| [35] |
Ciofu O, Moser C, Jensen PØ, et al. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol. 2022;20(10):621–35. doi: 10.1038/s41579-022-00682-4 |
| [36] |
Ciofu O., Moser C., Jensen P.Ø., et al. Tolerance and resistance of microbial biofilms // Nat. Rev. Microbiol. 2022. Vol. 20, No. 10. P. 621–635. doi: 10.1038/s41579-022-00682-4 |
| [37] |
Muhammad MH, Idris AL, Fan X, et al. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front Microbiol. 2020; 11:928. doi: 10.3389/fmicb.2020.00928 |
| [38] |
Muhammad M.H., Idris A.L., Fan X., et al. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches // Front. Microbiol. 2020. Vol. 11. P. 928. doi: 10.3389/fmicb.2020.00928 |
| [39] |
Zhou L, Zhang Y, Ge Y, et al. Regulatory Mechanisms and Promising Applications of Quorum Sensing-Inhibiting Agents in Control of Bacterial Biofilm Formation. Front Microbiol. 2020;11:589640. doi: 10.3389/fmicb.2020.589640 |
| [40] |
Zhou L., Zhang Y., Ge Y., et al. Regulatory Mechanisms and Promising Applications of Quorum Sensing-Inhibiting Agents in Control of Bacterial Biofilm Formation // Front. Microbiology. 2020. Vol. 11. P. 589640. doi: 10.3389/fmicb.2020.589640 |
| [41] |
Uruén C, Chopo–Escuin G, Tommassen J, et al. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics (Basel). 2020;10(1):3. doi: 10.3390/antibiotics10010003 |
| [42] |
Uruén C., Chopo–Escuin G., Tommassen J., et al. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance // Antibiotics (Basel). 2020. Vol. 10, No. 1. P. 3. doi: 10.3390/antibiotics10010003 |
| [43] |
Petukhova IN, Dmitriyeva NV, Grigor'yevskaya ZV, et al. Infektsii, svyazannyye s obrazovaniyem bioplenok. Malignant Tumours. 2019; 9(3s1):26–31. (In Russ). doi: 10.18027/2224-5057-2019-9-3s1-26-31 |
| [44] |
Петухова И.Н., Дмитриева Н.В., Григорьевская З.В., и др. Инфекции, связанные с образованием биопленок // Злокачественные опухоли. 2019. T. 9, № 3s1. P. 26–31. doi: 10.18027/2224-5057-2019-9-3s1-26-31 |
| [45] |
Orazi G, O’Toole GA. “It Takes a Village”: Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms. J Bacteriol. 2019;202(1):e00530-19. doi: 10.1128/jb.00530-19 |
| [46] |
Orazi G., O’Toole G.A. “It Takes a Village”: Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms // J. Bacteriol. 2019. Vol. 202, No. 1. P. e00530-19. doi: 10.1128/jb.00530-19 |
| [47] |
Karkman A, Pärnänen K, Larsson DGJ. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat Commun. 2019;10(1):80. doi: 10.1038/s41467-018-07992-3 |
| [48] |
Karkman A., Pärnänen K., Larsson D.G.J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments // Nat. Commun. 2019. Vol. 10, No. 1. P. 80. doi: 10.1038/s41467-018-07992-3 |
| [49] |
Burtseva SA, Byrsa MN, Chebotar' VI. Raznoobraziye predstaviteley klassa Actinobacteria v vodnoy tolshche ozernoy sistemy «La Izvor». In: Instruire prin cercetare pentru o societate prosperă; Chişinău, 20–21 March 2021. 8th ed. Chişinău; 2021;1:165–72. Available at: https://ibn.idsi.md/en/vizualizare_articol/127529. Accessed: 2023 September 12. (In Russ). |
| [50] |
Бурцева С.А., Бырса М.Н., Чеботарь В.И. Разнообразие представителей класса Actinobacteria в водной толще озерной системы «La Izvor». В сб.: Instruire prin cercetare pentru o societate prosperă; Chişinău, 20–21 марта 2021. 8-е изд. Chişinău; 2021. Ч. 1. С. 165–172. Доступно по: https://ibn.idsi.md/en/vizualizare_articol/127529. Ссылка активна на 12.09.2023. |
| [51] |
Bengtsson–Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2018;42(1):fux053. doi: 10.1093/femsre/fux053 |
| [52] |
Bengtsson–Palme J., Kristiansson E., Larsson D.G.J. Environmental factors influencing the development and spread of antibiotic resistance // FEMS Microbiol. Rev. 2018. Vol. 42, No. 1. P. fux053. doi: 10.1093/femsre/fux053 |
| [53] |
Partridge SR, Kwong SM, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4): e00088-17. doi: 10.1128/cmr.00088-17 |
| [54] |
Partridge S.R., Kwong S.M., Firth N., et al. Mobile genetic elements associated with antimicrobial resistance // Clin. Microbiol. Rev. 2018. Vol. 31, No. 4. P. e00088-17. doi: 10.1128/cmr.00088-17 |
| [55] |
Andryukov BG, Besednova NN, Zaporozhets TS. Mobile Genetic Elements of Prokaryotes and Their Role in the Formation of Antibiotic Resistance in Pathogenic Bacteria. Antibiotics and Chemotherapy. 2022; 67(1-2):62–74. (In Russ). doi: 10.37489/0235-2990-2022-67-1-2-62-74 |
| [56] |
Андрюков Б.Г., Беседнова Н.Н., Запорожец Т.С. Мобильные генетические элементы прокариот и их роль в формировании резистентности к антибиотикам у патогенных бактерий // Антибиотики и Химиотерапия. 2022. Т. 67, № 1-2. С. 62–74. doi: 10.37489/0235-2990-2022-67-1-2-62-74 |
| [57] |
Humphrey S, Fillol–Salom A, Quiles–Puchalt N, et al. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nat Commun. 2021;12(1):6509. doi: 10.1038/s41467-021-26004-5 |
| [58] |
Humphrey S., Fillol–Salom A., Quiles–Puchalt N., et al. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements // Nat. Commun. 2021. Vol. 12, No. 1. P. 6509. doi: 10.1038/s41467-021-26004-5 |
| [59] |
Hall JPJ, Harrison E, Baltrus DA. Introduction: the secret lives of microbial mobile genetic elements. Philos Trans R Soc Lond B Biol Sci. 2022;377(1842):20200460. doi: 10.1098/rstb.2020.0460 |
| [60] |
Hall J.P.J., Harrison E., Baltrus D.A. Introduction: the secret lives of microbial mobile genetic elements // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022. Vol. 377, No. 1842. P. 20200460. doi: 10.1098/rstb.2020.0460 |
| [61] |
Mustafin RN. The Role of Mobile Genetic Elements in the Origin of Life on Earth. Uspekhi Fiziologicheskikh Nauk. 2019;50(3):45–64. (In Russ). doi: 10.1134/S0301179819020085 |
| [62] |
Мустафин Р.Н. Роль мобильных генетических элементов в возникновении жизни // Успехи физиологических наук. 2019. Т. 50, № 3. С. 45–64. doi: 10.1134/S0301179819020085 |
| [63] |
Akrami F, Rajabnia M, Pournajaf A. Resistance integrons; A mini review. Caspian J Intern Med. 2019;10(4):370–6. doi: 10.22088/cjim.10.4.370 |
| [64] |
Akrami F., Rajabnia M., Pournajaf A. Resistance integrons; A mini review // Caspian J. Intern. Med. 2019. Vol. 10, No. 4. P. 370–376. doi: 10.22088/cjim.10.4.370 |
| [65] |
Xu D, Lu W. Defensins: A Double-Edged Sword in Host Immunity. Front Immunol. 2020;11:764. doi: 10.3389/fimmu.2020.00764 |
| [66] |
Xu D., Lu W. Defensins: A Double-Edged Sword in Host Immunity // Front. Immunol. 2020. Vol. 11. P. 764. doi: 10.3389/fimmu.2020.00764 |
| [67] |
Shemyakin IG, Firstova VV, Fursova NK, et al. New-generation antibiotics, bacteriophage endolysins and nanomaterials for combating pathogens. Review. Biokhimiya. 2020;85(11):1615–32. (In Russ). doi: 10.31857/S0320972520110081 |
| [68] |
Шемякин И.Г., Фирстова В.В., Фурсова Н.К., и др. Новые возможности в борьбе с патогенными микроорганизмами. Обзор // Биохимия. 2020. Т. 85, № 11. P. 1615–1632. doi: 10.31857/S0320972520110081 |
| [69] |
Arepyeva MA, Kolbin AS, Sidorenko SV, et al. A mathematical model for predicting the development of bacterial resistance based on the relationship between the level of antimicrobial resistance and the volume of antibiotic consumption. J Glob Antimicrob Resist. 2017;8:148–56. doi: 10.1016/j.jgar.2016.11.010 |
| [70] |
Arepyeva M.A., Kolbin A.S., Sidorenko S.V., et al. A mathematical model for predicting the development of bacterial resistance based on the relationship between the level of antimicrobial resistance and the volume of antibiotic consumption // J. Glob. Antimicrob. Resist. 2017. Vol. 8. P. 148–156. doi: 10.1016/j.jgar.2016.11.010 |
| [71] |
Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci. 2019;20(18):4331. doi: 10.3390/ijms20184331 |
| [72] |
Pinzi L., Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery // Int. J. Mol. Sci. 2019. Vol. 20, No. 18. P. 4331. doi: 10.3390/ijms20184331 |
| [73] |
Jadhav PA, Baravkar A. Recent advances in antimicrobial activity of pyrimidines: a review. Asian J Pharm Clin Res. 2022;15(2):4–10. doi: 10.22159/ajpcr.2022.v15i2.43686 |
| [74] |
Jadhav P.A., Baravkar A. Recent advances in antimicrobial activity of pyrimidines: a review // Asian J. Pharm. Clin. Res. 2022. Vol. 15, No. 2. P. 4–10. doi: 10.22159/ajpcr.2022.v15i2.43686 |
| [75] |
Samotrueva MA, Gabitova NM, Genatullina GN, et al. Assessment of Antimycobacterial Activity of Newly Synthesized Pyrimidine Derivatives Against Mycobacterium tuberculosis. Antibiotics and Chemotherapy. 2022;67(3–4):4–15. (In Russ). doi: 10.37489/0235-2990-2022-67-3-4-4-15 |
| [76] |
Самотруева М.А., Габитова Н.М., Генатуллина Г.Н., и др. Оценка антимикобактериальной активности вновь синтезированных производных пиримидина в отношении Mycobacterium tuberculosis // Антибиотики и Химиотерапия. 2022. Т. 67, № 3–4. С. 4–15. doi: 10.37489/0235-2990-2022-67-3-4-4-15 |
| [77] |
Gordillo Altamirano FL, Barr JJ. Phage Therapy in the Post-antibiotic Era. Clin Microbiol Rev. 2019;32(2):e00066-18. doi: 10.1128/cmr.00066-18 |
| [78] |
Gordillo Altamirano F.L., Barr J.J. Phage Therapy in the Postantibiotic Era // Clin. Microbiol. Rev. 2019. Vol. 32, No. 2. P. e00066-18. doi: 10.1128/cmr.00066-18 |
| [79] |
Khan A, Ostaku J, Aras E, et al. Combating Infectious Diseases with Synthetic Biology. ACS Synth Biol. 2022;11(2):528–37. doi: 10.1021/acssynbio.1c00576 |
| [80] |
Khan A., Ostaku J., Aras E., et al. Combating Infectious Diseases with Synthetic Biology // ACS Synth. Biol. 2022. Vol. 11, No. 2. P. 528–537. doi: 10.1021/acssynbio.1c00576 |
| [81] |
Mokhov AA. «Synthetic» genom and products resultant using it as new objects of legal relations. Courier of Kutafin Moscow State Law University (MSAL)). 2020;(5):51–9. (In Russ). doi: 10.17803/2311-5998.2020.69.5.051-059 |
| [82] |
Мохов А.А. «Синтетический» геном и получаемые с его использованием продукты как новые объекты правоотношений // Вестник Университета имени О.Е. Кутафина (МГЮА). 2020. № 5. С. 51–59. doi: 10.17803/2311-5998.2020.69.5.051-059 |
| [83] |
Sineva ON. Isolation of rare Genera of actinomycetes — antibiotic producers from soils using Aloe Arborescens juice. Antibiotics and Chemotherapy. 2022;66(9–10):4–11. (In Russ). doi: 10.37489/0235-2990-2021-66-9-10-4-11 |
| [84] |
Синёва О.Н. Выделение актиномицетов редких родов — продуцентов антибиотиков из почв с применением сока Aloe arborescens // Антибиотики и Химиотерапия. 2022. Т. 66, № 9–10. С. 4–11. doi: 10.37489/0235-2990-2021-66-9-10-4-11 |
| [85] |
Liu T, Wang J, Gong X, et al. Rosemary and Tea Tree Essential Oils Exert Antibiofilm Activities In Vitro Against Staphylococcus aureus and Escherichia coli. J Food Prot. 2020;83(7):1261–7. doi: 10.4315/0362-028x.jfp-19-337 |
| [86] |
Liu T., Wang J., Gong X., et al. Rosemary and Tea Tree Essential Oils Exert Antibiofilm Activities In Vitro Against Staphylococcus aureus and Escherichia coli // J. Food Prot. 2020. Vol. 83, No. 7. P. 1261–1267. doi: 10.4315/0362-028x.jfp-19-337 |
| [87] |
Knezevic P, Aleksic V, Simin N, et al. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J Ethnopharmacol. 2016;178:125–36. doi: 10.1016/j.jep.2015.12.008 |
| [88] |
Knezevic P., Aleksic V., Simin N., et al. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii // J. Ethnopharmacol. 2016. Vol. 178. P. 125–136. doi: 10.1016/j.jep.2015.12.008 |
Eco-Vector
/
| 〈 |
|
〉 |