Role of surfactant proteins in development of pulmonary edema

Liya R. Pakhnova , Lyudmila P. Voronina , Dmitry V. Pakhnov

I.P. Pavlov Russian Medical Biological Herald ›› 2025, Vol. 33 ›› Issue (1) : 145 -156.

PDF (1615KB)
I.P. Pavlov Russian Medical Biological Herald ›› 2025, Vol. 33 ›› Issue (1) : 145 -156. DOI: 10.17816/PAVLOVJ568729
Reviews
review-article

Role of surfactant proteins in development of pulmonary edema

Author information +
History +
PDF (1615KB)

Abstract

INTRODUCTION: The problem of pulmonary edema is relevant in the modern world, since despite significant progress in understanding the etiology, pathogenesis and approaches to treatment, mortality reaches 50%. The complexity and relevance of the problem are associated with differential diagnosis of cardiogenic and non-cardiogenic pulmonary edema, which is of principal significance in selection of treatment and diagnostic tactic.

AIM: Based on the literature data, to analyze the diagnostic role of surfactant protein (SP) as a biomarker of pulmonary edema.

Traditional analysis of cardiogenic pulmonary edema implies the development of high pressure in the pulmonary capillaries, which creates hydrostatic gradients for the flow of fluid from capillaries into the interstitial and alveolar spaces. Experimental studies were conducted on animals with modeled pulmonary edema, clinical studies of the pulmonary barrier dysfunction were conducted in patients with pulmonary edema. Studies on animal models show that high pressure in capillaries can cause disruption of the barrier in alveolar-capillary cells, which increases permeability and transport of fluid and protein into the lung parenchyma, with the subsequent dysfunction of surfactant. As reported in literature, some patients with cardiogenic pulmonary edema have elevated plasma levels of SP and tumor necrosis factor alpha, which reflects disruption of the barrier and acute tissue injury, respectively. Studies conducted in patients with chronic heart failure and impaired gas exchange have determined increase in the number of alveolar type II cells and increase in SP level in plasma.

CONCLUSION: Thus, the conducted studies suggest that acute rise of capillary pressure can cause lung injury, destruct the barrier, and contribute to the overproduction of fluid both through hydrostatic mechanisms, and through alteration of the permeability of alveolar–capillary barrier. Upon that, patients with cardiogenic pulmonary edema had high SP levels in plasma.

Keywords

heart failure / pulmonary edema / surfactant / surfactant protein / biomarker

Cite this article

Download citation ▾
Liya R. Pakhnova, Lyudmila P. Voronina, Dmitry V. Pakhnov. Role of surfactant proteins in development of pulmonary edema. I.P. Pavlov Russian Medical Biological Herald, 2025, 33(1): 145-156 DOI:10.17816/PAVLOVJ568729

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Komiya K, Akaba T, Kozaki Y, et al. A systematic review of diagnostic methods to differentiate acute lung injury/acute respiratory distress syndrome from cardiogenic pulmonary edema. Crit Care. 2017;21(1):228. doi: 10.1186/s13054-017-1809-8

[2]

Komiya K., Akaba T., Kozaki Y., et al. A systematic review of diagnostic methods to differentiate acute lung injury/acute respiratory distress syndrome from cardiogenic pulmonary edema // Crit. Care. 2017. Vol. 21, No. 1. P. 228. doi: 10.1186/s13054-017-1809-8

[3]

Tereshchenko SN, Zhirov IV, Nasonova SN, et al. Pathophysiology of acute heart failure. What’s new? Russ J Cardiol. 2016;(9):52–64. (In Russ). doi: 10.15829/1560-4071-2016-9-52-64

[4]

Терещенко С.Н., Жиров И.В., Насонова С.Н., и др. Патофизиология острой сердечной недостаточности. Что нового? // Российский кардиологический журнал. 2016. № 9 (137). С. 52–64. doi: 10.15829/1560-4071-2016-9-52-64

[5]

Mareev VYu, Fomin IV, Ageev FT, et al.; Russian Heart Failure Society, Russian Society of Cardiology. Russian Scientific Medical Society of Internal Medicine Guidelines for Heart failure: chronic (CHF) and acute decompensated (ADHF). Diagnosis, prevention and treatment. Kardiologiia. 2018;58(6S):8–158. (In Russ). doi: 10.18087/cardio.2475

[6]

Мареев В.Ю., Фомин И.В., Агеев Ф.Т., и др. Клинические рекомендации ОССН–РКО–РНМОТ. Сердечная недостаточность: хроническая (ХСН) и острая декомпенсированная (ОДСН). Диагностика, профилактика и лечение // Кардиология. 2018. Т. 58, № 6S. С. 8–158. doi: 10.18087/cardio.2475

[7]

Wright JR. Immunoregulatory functions of surfactant proteins. Nat Rev Immunol. 2005;5(1):58–68. doi: 10.1038/nri1528

[8]

Wright J.R. Immunoregulatory functions of surfactant proteins // Nat. Rev. Immunol. 2005. Vol. 5, No. 1. P. 58–68. doi: 10.1038/nri1528

[9]

Casals C. Role of surfactant protein A (SP-A)/lipid interactions for SP-A functions in the lung. Pediatr Pathol Mol Med. 2001;20(4): 249–68. doi: 10.1080/15513810109168821

[10]

Casals C. Role of surfactant protein A (SP-A)/lipid interactions for SP-A functions in the lung // Pediatr. Pathol. Mol. Med. 2001. Vol. 20, No. 4. P. 249–268. doi: 10.1080/15513810109168821

[11]

Vieira F, Kung JW, Bhatti F. Structure, genetics and function of the pulmonary associated surfactant proteins A and D: The extra-pulmonary role of these C type lectins. Ann Anat. 2017;211:184–201. doi: 10.1016/j.aanat.2017.03.002

[12]

Vieira F., Kung J.W., Bhatti F. Structure, genetics and function of the pulmonary associated surfactant proteins A and D: The extra-pulmonary role of these C type lectins // Ann. Anat. 2017. Vol. 211. P. 184–201. doi: 10.1016/j.aanat.2017.03.002

[13]

Arroyo R, Echaide M, Moreno–Herrero F, et al. Functional characterization of the different oligomeric forms of human surfactant protein SP-D. Biochim Biophys Acta Proteins Proteom. 2020;1868(8):140436. doi: 10.1016/j.bbapap.2020.140436

[14]

Arroyo R., Echaide M., Moreno–Herrero F., et al. Functional characterization of the different oligomeric forms of human surfactant protein SP-D // Biochim. Biophys. Acta Proteins Proteom. 2020. Vol. 1868, No. 8. P. 140436. doi: 10.1016/j.bbapap.2020.140436

[15]

Okazaki S, Murai H, Kidoguchi S, et al. The Biomarker Salivary SP-D may Indicate Small Airway Inflammation and Asthma Exacerbation. J Investig Allergol Clin Immunol. 2017;27(5):305–12. doi: 10.18176/jiaci.0174

[16]

Okazaki S., Murai H., Kidoguchi S., et al. The Biomarker Salivary SP-D May Indicate Small Airway Inflammation and Asthma Exacerbation // J. Investig. Allergol. Clin. Immunol. 2017. Vol. 27, No. 5. P. 305–312. doi: 10.18176/jiaci.0174

[17]

Dy ABC, Arif MZ, Addison KJ, et al. Genetic Variation in Surfactant Protein-A2 Delays Resolution of Eosinophilia in Asthma. J Immunol. 2019;203(5):1122–30. doi: 10.4049/jimmunol.1900546

[18]

Dy A.B.C., Arif M.Z., Addison K.J., et al. Genetic Variation in Surfactant Protein-A2 Delays Resolution of Eosinophilia in Asthma // J. Immunol. 2019. Vol. 203, No. 5. P. 1122–1130. doi: 10.4049/jimmunol.1900546

[19]

Yoshikawa T, Otsuka M, Chiba H, et al. Surfactant protein A as a biomarker of outcomes of anti-fibrotic drug therapy in patients with idiopathic pulmonary fibrosis. BMC Pulm Med. 2020;20(1):27. doi: 10.1186/s12890-020-1060-y

[20]

Yoshikawa T., Otsuka M., Chiba H., et al. Surfactant protein A as a biomarker of outcomes of anti-fibrotic drug therapy in patients with idiopathic pulmonary fibrosis // BMC Pulm. Med. 2020. Vol. 20, No. 1. P. 27. doi: 10.1186/s12890-020-1060-y

[21]

Reynolds P, Bustani P, Darby C, et al. Less-Invasive Surfactant Administration for Neonatal Respiratory Distress Syndrome: A Consensus Guideline. Neonatology. 2021;118(5):586–92. doi: 10.1159/000518396

[22]

Reynolds P., Bustani P., Darby C., et al. Less-Invasive Surfactant Administration for Neonatal Respiratory Distress Syndrome: A Consensus Guideline // Neonatology. 2021. Vol. 118, No. 5. P. 586–592. doi: 10.1159/000518396

[23]

Schicke E, Cseresnyés Z, Rennert K, et al. Staphylococcus aureus Lung Infection Results in Down-Regulation of Surfactant Protein-A Mainly Caused by Pro-Inflammatory Macrophages. Microorganisms. 2020;8(4):577. doi: 10.3390/microorganisms8040577

[24]

Schicke E., Cseresnyés Z., Rennert K., et al. Staphylococcus aureus Lung Infection Results in Down-Regulation of Surfactant Protein-A Mainly Caused by Pro-Inflammatory Macrophages // Microorganisms. 2020. Vol. 8, No. 4. P. 577. doi: 10.3390/microorganisms8040577

[25]

Kendall M, Ding P, Mackay R–M, et al. Surfactant protein D (SP-D) alters cellular uptake of particles and nanoparticles. Nanotoxicology. 2013;7(5):963–73. doi: 10.3109/17435390.2012.689880

[26]

Kendall M., Ding P., Mackay R.–M., et al. Surfactant protein D (SP-D) alters cellular uptake of particles and nanoparticles // Nanotoxicology. 2013. Vol. 7, No. 5. P. 963–973. doi: 10.3109/17435390.2012.689880

[27]

Hou X, Zhang X, Zhang Z. Role of surfactant protein-D in ocular bacterial infection. Int Ophthalmol. 2022;42(11):3611–23. doi: 10.1007/s10792-022-02354-x

[28]

Hou X., Zhang X., Zhang Z. Role of surfactant protein-D in ocular bacterial infection // Int. Ophthalmol. 2022. Vol. 42, No. 11. P. 3611–3623. doi: 10.1007/s10792-022-02354-x

[29]

Posa A, Paulsen F, Dietz R, et al. Quantification of surfactant proteins in tears of patients suffering from dry eye disease compared to healthy subjects. Ann Anat. 2018;216:90–4. doi: 10.1016/j.aanat.2017.11.006

[30]

Posa A., Paulsen F., Dietz R., et al. Quantification of surfactant proteins in tears of patients suffering from dry eye disease compared to healthy subjects // Ann. Anat. 2018. Vol. 216. P. 90–94. doi: 10.1016/j.aanat.2017.11.006

[31]

Yang Y, Li Q, Tan F, et al. Mechanism of IL-8-induced acute lung injury through pulmonary surfactant proteins A and B. Exp Ther Med. 2020;19(1):287–93. doi: 10.3892/etm.2019.8192

[32]

Yang Y., Li Q., Tan F., et al. Mechanism of IL-8-induced acute lung injury through pulmonary surfactant proteins A and B // Exp. Ther. Med. 2020. Vol. 19, No. 1. P. 287–293. doi: 10.3892/etm.2019.8192

[33]

Lee YS. Electron microscopic studies on the alveolar-capillary barrier in the patients of chronic pulmonary edema. Jpn Circ J. 1979;43(10):945–54. doi: 10.1253/jcj.43.945

[34]

Lee Y.S. Electron microscopic studies on the alveolar-capillary barrier in the patients of chronic pulmonary edema // Jpn. Circ. J. 1979. Vol. 43, No. 10. P. 945–954. doi: 10.1253/jcj.43.945

[35]

West JB. Invited review: pulmonary capillary stress failure. J Appl Physiol (1985). 2000;89(6):2483–9; discussion 2497. doi: 10.1152/jappl.2000.89.6.2483

[36]

West J.B. Invited review: pulmonary capillary stress failure // J. Appl. Physiol. (1985). 2000. Vol. 89, No. 6. P. 2483–2489; discussion 2497. doi: 10.1152/jappl.2000.89.6.2483

[37]

Pappas L, Filippatos G. Pulmonary congestion in acute heart failure: from hemodynamics to lung injury and barrier dysfunction. Rev Esp Cardiol. 2011;64(9):735–8. (In Spanish). doi: 10.1016/j.recesp.2011.05.006

[38]

Pappas L., Filippatos G. Pulmonary congestion in acute heart failure: from hemodynamics to lung injury and barrier dysfunction // Rev. Esp. Cardiol. 2011. Vol. 64, No. 9. P. 735–738. doi: 10.1016/j.recesp.2011.05.006

[39]

Tsukimoto K, Mathieu–Costello O, Prediletto R, et al. Ultrastructural appearances of pulmonary capillaries at high transmural pressures. J Appl Physiol (1985). 1991;71(2):573–82. doi: 10.1152/jappl.1991. 71.2.573

[40]

Tsukimoto K., Mathieu–Costello O., Prediletto R., et al. Ultra-structural appearances of pulmonary capillaries at high transmural pressures // J. Appl. Physiol. (1985). 1991. Vol. 71, No. 2. P. 573–582. doi: 10.1152/jappl.1991.71.2.573

[41]

Bredenberg CE, Nieman GF, Paskanik AM, et al. Microvascular membrane permeability in high surface tension pulmonary edema. J Appl Physiol (1985). 1986;60(1):253–9. doi: 10.1152/jappl. 1986.60.1.253

[42]

Bredenberg C.E., Nieman G.F., Paskanik A.M., et al. Microvascular membrane permeability in high surface tension pulmonary edema // J. App. Physiol. (1985). 1986. Vol. 60, No. 1. P. 253–259. doi: 10.1152/jappl.1986.60.1.253

[43]

Bachofen H, Schürch S, Michel RP, et al. Experimental hydrostatic pulmonary edema in rabbit lungs. Morphology. Am Rev Respir Dis. 1993;147(4):989–96. doi: 10.1164/ajrccm/147.4.989

[44]

Bachofen H., Schürch S., Michel R.P., et al. Experimental hydrostatic pulmonary edema in rabbit lungs. Morphology // Am. Rev. Respir. Dis. 1993. Vol. 147, No. 4. P. 989–996. doi: 10.1164/ajrccm/147.4.989

[45]

West JB, Mathieu–Costello O, Jones JH, et al. Stress failure of pulmonary capillaries in racehorses with exercise–induced pulmonary hemorrhage. J Appl Physiol (1985). 1993;75(3):1097–109. doi: 10.1152/jappl.1993.75.3.1097

[46]

West J.B., Mathieu–Costello O., Jones J.H., et al. Stress failure of pulmonary capillaries in racehorses with exercise–induced pulmonary hemorrhage // J. Appl. Physiol. (1985). 1993. Vol. 75, No. 3. P. 1097–1109. doi: 10.1152/jappl.1993.75.3.1097

[47]

Tomonaga T, Izumi H, Yoshiura Y, et al. Examination of Surfactant Protein D as a Biomarker for Evaluating Pulmonary Toxicity of Nanomaterials in Rat. Int J Mol Sci. 2021;22(9):4635. doi: 10.3390/ijms22094635

[48]

Tomonaga T., Izumi H., Yoshiura Y., et al. Examination of Surfactant Protein D as a Biomarker for Evaluating Pulmonary Toxicity of Nanomaterials in Rat // Int. J. Mol. Sci. 2021. Vol. 22, No. 9. P. 4635. doi: 10.3390/ijms22094635

[49]

Haworth SG, Hall SM, Patel M, et al. Peripheral pulmonary vascular and airway abnormalities in adolescents with rheumatic mitral stenosis. Int J Cardiol. 1988;18(3):405–16. doi: 10.1016/0167-5273(88)90059-9

[50]

Haworth S.G., Hall S.M., Patel M., et al. Peripheral pulmonary vascular and airway abnormalities in adolescents with rheumatic mitral stenosis // Int. J. Cardiol. 1988. Vol. 18, No. 3. P. 405–416. doi: 10.1016/0167-5273(88)90059-9

[51]

Doyle IR, Nicholas TE, Bersten AD. Serum surfactant protein-A levels in patients with acute cardiogenic pulmonary edema and adult respiratory distress syndrome. Am J Respir Crit Care Med. 1995;152(1):307–17. doi: 10.1164/ajrccm.152.1.7599839

[52]

Doyle I.R., Nicholas T.E., Bersten A.D. Serum surfactant protein-A levels in patients with acute cardiogenic pulmonary edema and adult respiratory distress syndrome // Am. J. Respir. Crit. Care Med. 1995. Vol. 152, No. 1. P. 307–317. doi: 10.1164/ajrccm.152.1.7599839

[53]

Shimura S, Masuda T, Takishima T, et al. Surfactant apoprotein-A concentration in airway secretions for the detection of pulmonary oedema. Eur Respir J. 1996;9(12):2525–30. doi: 10.1183/09031936.96.09122525

[54]

Shimura S., Masuda T., Takishima T., et al. Surfactant apoprotein-A concentration in airway secretions for the detection of pulmonary oedema // Eur. Respir. J. 1996. Vol. 9, No. 12. P. 2525–2530. doi: 10.1183/09031936.96.09122525

[55]

Günther A, Siebert C, Schmidt R, et al. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care Med. 1996;153(1): 176–84. doi: 10.1164/ajrccm.153.1.8542113

[56]

Günther A., Siebert C., Schmidt R., et al. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema // Am. J. Respir. Crit. Care Med. 1996. Vol. 153, No. 1. P. 176–184. doi: 10.1164/ajrccm.153.1.8542113

[57]

De Pasquale CG, Arnolda LF, Doyle IR, et al. Plasma surfactant protein-B: a novel biomarker in chronic heart failure. Circulation. 2004;110(9):1091–6. doi: 10.1161/01.cir.0000140260.73611.fa

[58]

De Pasquale C.G., Arnolda L.F., Doyle I.R., et al. Plasma surfactant protein-B: a novel biomarker in chronic heart failure // Circulation. 2004. Vol. 110, No. 9. P. 1091–1096. doi: 10.1161/01.cir.0000140260.73611.fa

[59]

De Pasquale CG, Arnolda LF, Doyle IR, et al. Circulating surfactant protein-B levels increase acutely in response to exercise–induced left ventricular dysfunction. Clin Exp Pharmacol Physiol. 2005;32(8): 622–7. doi: 10.1111/j.0305-1870.2005.04241.x

[60]

De Pasquale C.G., Arnolda L.F., Doyle I.R., et al. Circulating surfactant protein-B levels increase acutely in response to exercise-induced left ventricular dysfunction // Clin. Exp. Pharmacol. Physiol. 2005. Vol. 32, No. 8. P. 622–627. doi: 10.1111/j.0305-1870.2005.04241.x

[61]

Magrì D, Brioschi M, Banfi C, et al. Circulating plasma surfactant protein type B as biological marker of alveolar-capillary barrier damage in chronic heart failure. Circ Heart Fail. 2009;2(3):175–80. doi: 10.1161/circheartfailure.108.819607

[62]

Magrì D., Brioschi M., Banfi C., et al. Circulating plasma surfactant protein type B as biological marker of alveolar-capillary barrier damage in chronic heart failure // Circ. Heart Fail. 2009. Vol. 2, No. 3. P. 175–180. doi: 10.1161/circheartfailure.108.819607

[63]

Magrì D, Banfi C, Maruotti A, et al. Plasma immature form of surfactant protein type B correlates with prognosis in patients with chronic heart failure. A pilot single-center prospective study. Int J Cardiol. 2015;201:394–9. doi: 10.1016/j.ijcard.2015.08.105

[64]

Magrì D., Banfi C., Maruotti A., et al. Plasma immature form of surfactant protein type B correlates with prognosis in patients with chronic heart failure. A pilot single-center prospective study // Int. J. Cardiol. 2015. Vol. 201. P. 394–399. doi: 10.1016/j.ijcard.2015.08.105

[65]

Lüers C, Hagenah G, Wachter R, et al. Importance of surfactant proteins B and D for the differential diagnosis of acute dyspnea. Med Klin (Munich). 2010;105(9):611–8. (In German). doi: 10.1007/s00063-010-1100-0

[66]

Lüers C., Hagenah G., Wachter R., et al. Importance of surfactant proteins B and D for the differential diagnosis of acute dyspnea // Med. Klin. (Munich). 2010. Vol. 105, No. 9. P. 611–618. doi: 10.1007/s00063-010-1100-0

[67]

Agostoni P, Banfi C, Magrì D, et al. Kinetics of plasma SPB and RAGE during mechanical ventilation in patients undergoing major vascular surgery. Respir Physiol Neurobiol. 2011;178(2):256–60. doi: 10.1016/j.resp.2011.06.019

[68]

Agostoni P., Banfi C., Magrì D., et al. Kinetics of plasma SPB and RAGE during mechanical ventilation in patients undergoing major vascular surgery // Respir. Physiol. Neurobiol. 2011. Vol. 178, No. 2. P. 256–260. doi: 10.1016/j.resp.2011.06.019

[69]

Hill J, Heslop C, Man SFP, et al. Circulating surfactant protein-D and the risk of cardiovascular morbidity and mortality. Eur Heart J. 2011;32(15):1918–25. doi: 10.1093/eurheartj/ehr124

[70]

Hill J., Heslop C., Man S.F.P., et al. Circulating surfactant protein-D and the risk of cardiovascular morbidity and mortality // Eur. Heart J. 2011. Vol. 32, No. 15. P. 1918–1925. doi: 10.1093/eurheartj/ehr124

[71]

Gargiulo P, Banfi C, Ghilardi S, et al. Surfactant-Derived Proteins as Markers of Alveolar Membrane Damage in Heart Failure. PLoS One. 2014;9(12):e115030. doi: 10.1371/journal.pone.0115030

[72]

Gargiulo P., Banfi C., Ghilardi S., et al. Surfactant-Derived Proteins as Markers of Alveolar Membrane Damage in Heart Failure // PLoS One. 2014. Vol. 9, No. 12. P. e115030. doi: 10.1371/journal.pone.0115030

[73]

Brankovic M, Akkerhuis KM, Mouthaan H, et al. Utility of temporal profiles of new cardio-renal and pulmonary candidate biomarkers in chronic heart failure. Int J Cardiol. 2019;276:157–65. doi: 10.1016/j.ijcard.2018.08.001

[74]

Brankovic M., Akkerhuis K.M., Mouthaan H., et al. Utility of temporal profiles of new cardio-renal and pulmonary candidate biomarkers in chronic heart failure // Int. J. Cardiol. 2019. Vol. 276. P. 157–165. doi: 10.1016/j.ijcard.2018.08.001

[75]

Banfi C, Brioschi M, Karjalainen MK, et al. Immature surfactant protein-B impairs the antioxidant capacity of HDL. Int J Cardiol. 2019;285:53–8. doi: 10.1016/j.ijcard.2019.02.057

[76]

Banfi C., Brioschi M., Karjalainen M.K., et al. Immature surfactant protein-B impairs the antioxidant capacity of HDL // Int. J. Cardiol. 2019. Vol. 285. P. 53–58. doi: 10.1016/j.ijcard.2019.02.057

[77]

Banfi C, Gugliandolo P, Paolillo S, et al. The alveolar-capillary unit in the physiopathological conditions of heart failure: identification of a potential marker. Eur J Prev Cardiol. 2023;30(Suppl 2):ii2–8. doi: 10.1093/eurjpc/zwad227

[78]

Banfi C., Gugliandolo P., Paolillo S., et al. The alveolar-capillary unit in the physiopathological conditions of heart failure: identification of a potential marker // Eur. J. Prev. Cardiol. 2023. Vol. 30, Suppl. 2. P. ii2–ii8. doi: 10.1093/eurjpc/zwad227

[79]

Zanza C, Saglietti F, Tesauro M, et al. Cardiogenic Pulmonary Edema in Emergency Medicine. Adv Respir Med. 2023;91(5):445–63. doi: 10.3390/arm91050034

[80]

Zanza C., Saglietti F., Tesauro M., et al. Cardiogenic Pulmonary Edema in Emergency Medicine // Adv. Respir. Med. 2023. Vol. 91, No. 5. P. 445–463. doi: 10.3390/arm91050034

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1615KB)

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/