Features of cytokine production in patients with bacterial pneumonia with underlying acute respiratory viral infection

Vladimir K. Parfenyuk , Nelli V. Bondar , Viktor S. Nikiforov , Stanislav S. Bondar , Igor’ V. Terekhov

I.P. Pavlov Russian Medical Biological Herald ›› 2025, Vol. 33 ›› Issue (1) : 49 -60.

PDF (1197KB)
I.P. Pavlov Russian Medical Biological Herald ›› 2025, Vol. 33 ›› Issue (1) : 49 -60. DOI: 10.17816/PAVLOVJ529656
Original study
research-article

Features of cytokine production in patients with bacterial pneumonia with underlying acute respiratory viral infection

Author information +
History +
PDF (1197KB)

Abstract

INTRODUCTION: Pneumonia is one of the most common inflammatory diseases of the lower airways associated with a high risk of development of life-threatening complications, the effective correction of which requires taking into account the peculiarities of inflammatory response of an organism, in particular, determination of cytokine production.

AIM: To study the peculiarities of cytokine and inflammatory effector molecule production in patients with community-acquired pneumonia (CAP) with the underlying acute respiratory viral co-infection.

MATERIALS AND METHODS: A total of 85 patients of both genders aged 18 to 33 years with bacterial CAP were examined, including 30 patients without signs of acute respiratory viral infection (ARVI), 55 patients with ARVI in the first 3 days of illness, and 25 practically healthy individuals. In the venous blood serum, the concentration of interleukins (IL) IL-1β, -2, -4, -8, -10, -11, -12, -13, -15, -18, -17A, -20, -23, -24, -28A, -33, interleukin-1 receptor antagonist, tumor necrosis factor α (TNFα), interferons (IFN): IFNα and IFNγ, macrophage inflammatory protein 3α (MIP3α), monocyte chemoattractant protein 1, granulocyte colony-stimulating growth factor, transforming growth factor β, basic fibroblast growth factor (bFGF), vascular endothelial growth factor A, soluble form of type 1 receptor to VEGF-A, soluble form type 1 receptor to TNFα, were determined.

RESULTS: In patients with mild CAP with added ARVI, the greatest increase was noted in production of IL-17A compared to patients without ARVI (р = 0.043). At the same time, production of MIP3α decreased by 13.7% (р = 0.01). In severe CAP with the underlying ARVI, production of IL-1β changed to a greater extent, increasing by 31.6% (р = 0.039), with the underlying 25.0% decrease in production of MIP3α (р = 0.05) and bFGF (р = 0.039). In patients with mild CAP compared to ARVI, production of IFNα decreased by 104.9% (р = 0.001), with the underlying increase in IL-17A by 63.8% (р = 0.001). Severe CAP, compared with ARVI, was characterized by a decrease in production of IFNα by 65.8% (р = 0.0001), with the underlying increase in the level of IL-17A by 69.9% (р = 0.0001).

CONCLUSIONS: The addition of acute viral infection in patients with bacterial CAP promotes a change in the cytokine profile of blood serum, evidencing a modification of the immune response in such patients, probably, due to a change in the activity of macrophages and T-helpers.

Keywords

acute respiratory viral infection / ARVI / pneumonia / inflammation / interleukins / TNFα / IL-1β

Cite this article

Download citation ▾
Vladimir K. Parfenyuk, Nelli V. Bondar, Viktor S. Nikiforov, Stanislav S. Bondar, Igor’ V. Terekhov. Features of cytokine production in patients with bacterial pneumonia with underlying acute respiratory viral infection. I.P. Pavlov Russian Medical Biological Herald, 2025, 33(1): 49-60 DOI:10.17816/PAVLOVJ529656

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chuchalin AG, editor. Pul’monologiya. Natsional’noye rukovodstvo. Kratkoye izdaniye. Moscow: GEOTAR-Media; 2020. (In Russ).

[2]

Чучалин А.Г., ред. Пульмонология. Национальное руководство. Краткое издание. М.: ГЭОТАР-Медиа; 2020.

[3]

Simbirtsev AS. Tsitokiny v patogeneze i lechenii zabolevaniy cheloveka. Saint-Petersburg: Foliant; 2018. (In Russ).

[4]

Симбирцев А.С. Цитокины в патогенезе и лечении заболеваний человека. СПб.: Фолиант; 2018.

[5]

Nikolaeva SV, Khlypovka YuN, Gorelov AV. Acute respiratory infections of concomitant etiology in children. Meditsinskiy Sovet. 2022;16(12):40–3. (In Russ). doi: 10.21518/2079-701X-2022-16-12-40-43

[6]

Николаева С.В., Хлыповка Ю.Н., Горелов А.В. Острые респираторные инфекции сочетанной этиологии у детей // Медицинский совет. 2022. Т. 16, № 12. С. 40–43. doi: 10.21518/2079-701X-2022-16-12-40-43

[7]

Bakaletz LO. Viral-bacterial co-infections in the respiratory tract. Curr Opin Microbiol. 2017;35:30–5. doi: 10.1016/j.mib.2016.11.003

[8]

Bakaletz L.O. Viral-bacterial co-infections in the respiratory tract // Curr. Opin. Microbiol. 2017. Vol. 35. P. 30–35. doi: 10.1016/j.mib.2016.11.003

[9]

Bobkova SS, Tyurin IN, Troshchansky DV, et al. Use of monoclonal antibodies to IL-6 in patients with severe COVID-19. Pulmonologiya. 2021; 31(3):263–71. (In Russ). doi: 10.18093/0869-0189-2021-31-3-263-271

[10]

Бобкова С.С., Тюрин И.Н., Трощанский Д.В., и др. Применение блокаторов рецепторов к IL-6 у пациентов с COVID-19 тяжелого течения // Пульмонология. 2021. Т. 31, № 3. С. 263–271. doi: 10.18093/0869-0189-2021-31-3-263-271

[11]

Fomina DS, Poteshkina NG, Beloglazova IP, et al. Comparative analysis of tocilizumab in severe COVID-19-associated pneumonia in patients of different age groups. Pulmonologiya. 2020;30(2):164–72. (In Russ). doi: 10.18093/0869-0189-2020-30-2-164-172

[12]

Фомина Д.С., Потешкина Н.Г., Белоглазова И.П., и др. Сравнительный анализ применения тоцилизумаба при тяжелых COVID-19-ассоциированных пневмониях у пациентов разных возрастных групп // Пульмонология. 2020. Т. 30, № 2. С. 164–172. doi: 10.18093/0869-0189-2020-30-2-164-172

[13]

Bondar SS, Terekhov IV, Parfenyuk VK, et al. The relationship of alveolar-bronchiolar disorders with the level of interleukin-20 in patients with community-acquired pneumonia. Humans and Their Health. 2022;25(2):31–42. (In Russ). doi: 10.21626/vestnik/2022-2/04

[14]

Бондарь С.С., Терехов И.В., Парфенюк В.К., и др. Взаимосвязь альвеолярно-бронхиолярных нарушений с уровнем интерлейкина-20 у больных с внебольничной пневмонией // Человек и его здоровье. 2022. Т. 25, № 2. С. 31–42. doi: 10.21626/vestnik/2022-2/04

[15]

Gou X, Yuan J, Wang H, et al. IL-6 During Influenza — Streptococcus pneumonia Co-Infected Pneumonia — A Protector. Front Immunol. 2020;10:3102. doi: 10.3389/fimmu.2019.03102

[16]

Gou X., Yuan J., Wang H., et al. IL-6 During Influenza — Streptococcus pneumonia Co-Infected Pneumonia — A Protector // Front. Immunol. 2020. Vol. 10. P. 3102. doi: 10.3389/fimmu.2019.03102

[17]

Li Y, Wu Q, Jin Y, et al. Antiviral activity of interleukin-11 as a response to porcine epidemic diarrhea virus infection. Vet Res. 2019; 50(1):111. doi: 10.1186/s13567-019-0729-9

[18]

Li Y., Wu Q., Jin Y., et al. Antiviral activity of interleukin-11 as a response to porcine epidemic diarrhea virus infection // Vet. Res. 2019. Vol. 50, No. 1. P. 111. doi: 10.1186/s13567-019-0729-9

[19]

Oliva J, Terrier O. Viral and Bacterial Co-Infections in the Lungs: Dangerous Liaisons. Viruses. 2021;13(9):1725. doi: 10.3390/v13091725

[20]

Oliva J., Terrier O. Viral and Bacterial Co-Infections in the Lungs: Dangerous Liaisons // Viruses. 2021. Vol. 13, No. 9. P. 1725. doi: 10.3390/v13091725

[21]

Le Nouën C, Hillyer P, Munir S, et al. Effects of human respiratory syncytial virus, metapneumovirus, parainfluenza virus 3 and influenza virus on CD4+ T cell activation by dendritic cells. PLoS One. 2010;5(11):e15017. doi: 10.1371/journal.pone.0015017

[22]

Le Nouën C., Hillyer P., Munir S., et al. Effects of human respiratory syncytial virus, metapneumovirus, parainfluenza virus 3 and influenza virus on CD4+ T cell activation by dendritic cells // PLoS One. 2010. Vol. 5, No. 11. P. e15017. doi: 10.1371/journal.pone.0015017

[23]

Verma AK, Bansal S, Bauer C, et al. Influenza Infection Induces Alveolar Macrophage Dysfunction and Thereby Enables Noninvasive Streptococcus pneumonia to Cause Deadly Pneumonia. J Immunol. 2020;205(6):1601–7. doi: 10.4049/jimmunol.2000094

[24]

Verma A.K., Bansal S., Bauer C., et al. Influenza Infection Induces Alveolar Macrophage Dysfunction and Thereby Enables Noninvasive Streptococcus pneumonia to Cause Deadly Pneumonia // J. Immunol. 2020. Vol. 205, No. 6. P. 1601–1607. doi: 10.4049/jimmunol.2000094

[25]

Reece MD, Taylor RR, Song C, et al. Targeting Macrophage Dysregulation for Viral Infections: Novel Targets for Immunomodulators. Front Immunol. 2021;12:768695. doi: 10.3389/fimmu.2021.768695

[26]

Reece M.D., Taylor R.R., Song C., et al. Targeting Macrophage Dys-regulation for Viral Infections: Novel Targets for Immunomodulators // Front. Immunol. 2021. Vol. 12. P. 768695. doi: 10.3389/fimmu.2021.768695

[27]

Terekhov IV, Bondar SS, Khadartsev AA. The laboratory detection of intra-cellular factors of anti-viral defense under community-acquired pneumonia in evaluation of effects of low-intensity microwave radiation. Russian Clinical Laboratory Diagnostics. 2016;61(6):380–4. (In Russ). doi: 10.18821/0869-2084-2016-61-6-380-384

[28]

Терехов И.В., Бондарь С.С., Хадарцев А.А. Лабораторное определение внутриклеточных факторов противовирусной защиты при внебольничной пневмонии в оценке эффектов низкоинтенсивного СВЧ-излучения // Клиническая лабораторная диагностика. 2016. Т. 61, № 6. С. 380–384. doi: 10.18821/0869-2084-2016-61-6-380-384

[29]

Manna S, McAuley J, Jacobson J, et al. Synergism and Antagonism of Bacterial-Viral Coinfection in the Upper Respiratory Tract. mSphere. 2022;7(1):e0098421. doi: 10.1128/msphere.00984-21

[30]

Manna S., McAuley J., Jacobson J., et al. Synergism and Antagonism of Bacterial-Viral Coinfection in the Upper Respiratory Tract // mSphere. 2022. Vol. 7, No. 1. P. e0098421. doi: 10.1128/msphere.00984-21

[31]

Tei R, Iijima K, Matsumoto K, et al. TLR3-driven IFN-β antagonizes STAT5-activating cytokines and suppresses innate type 2 response in the lung. J Allergy Clin Immunol. 2021;149(3):1044–59.e5. doi: 10.1016/j.jaci.2021.07.041

[32]

Tei R., Iijima K., Matsumoto K., et al. TLR3-driven IFN-β antagonizes STAT5-activating cytokines and suppresses innate type 2 response in the lung // J. Allergy Clin. Immunol. 2021. Vol. 149, No. 3. P. 1044–1059.e5. doi: 10.1016/j.jaci.2021.07.041

[33]

Gauthier T, Chen W. Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections. Front Immunol. 2022;13:780839. doi: 10.3389/fimmu.2022.780839

[34]

Gauthier T., Chen W. Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections // Front. Immunol. 2022. Vol. 13. P. 780839. doi: 10.3389/fimmu.2022.780839

[35]

Peng Y, Wang X, Wang H, et al. Interleukin-4 protects mice against lethal influenza and Streptococcus pneumoniae co-infected pneumonia. Clin Exp Immunol. 2021;205(3):379–90. doi: 10.1111/cei.13628

[36]

Peng Y., Wang X., Wang H., et al. Interleukin-4 protects mice against lethal influenza and Streptococcus pneumoniae co-infected pneumonia // Clin. Exp. Immunol. 2021. Vol. 205, No. 3. P. 379–390. doi: 10.1111/cei.13628

[37]

Terekhov IV, Khadartsev AA, Bondar SS, et al. Expression the TOLL- and NOD-like receptors, the levels in mononuclear cells whole blood, regulatory factors of antiviral defense and interferon production product under the influence of low-intensity microwave radiation with a frequency of 1 GHz. Journal of New Medical Technologies. eEdition. 2016;10(3):223–33. Available at: http://vnmt.ru/Bulletin/E2016-3/2-22.pdf. Accessed: 2023 July 03. (In Russ). doi: 12737/21557

[38]

Терехов И.В., Хадарцев А.А., Бондарь С.С., и др. Экспрессия TOLL- и NOD-подобных рецепторов, уровень в мононуклеарных клетках цельной крови регуляторных факторов противовирусной защиты и продукция интерферона под влиянием низкоинтенсивного микроволнового излучения частотой 1 ГГц // Вестник новых медицинских технологий. Электронное издание. 2016. T. 10, № 3. C. 223–233. Доступно по: http://vnmt.ru/Bulletin/E2016-3/2-22.pdf. Ссылка активна на 03.07.2023. doi: 12737/21557

[39]

Ren Z, Ding T, Zuo Z, et al. Regulation of MAVS Expression and Signaling Function in the Antiviral Innate Immune Response. Front Immunol. 2020;11:1030. doi: 10.3389/fimmu.2020.01030

[40]

Ren Z., Ding T., Zuo Z., et al. Regulation of MAVS Expression and Signaling Function in the Antiviral Innate Immune Response // Front. Immunol. 2020. Vol. 11. P. 1030. doi: 10.3389/fimmu.2020.01030

[41]

Terekhov IV, Bondar SS. Features of biological action of microwave radiation on the antiviral defense of whole blood in community-acquired pneumonia and in the healthy people. Journal of New Medical Technologies. 2015;(2):55–60. (In Russ). doi: 10.12737/11832

[42]

Терехов И.В., Бондарь С.С. Особенности биологического действия низкоинтенсивного СВЧ-излучения на состояние противовирусной защиты клеток цельной крови при внебольничной пневмонии и у здоровых лиц // Вестник новых медицинских технологий. 2015. Т. 22, № 2. С. 55–60. doi: 10.12737/11832

[43]

Voevodin AA, Khadartsev AA, Bondar SS, et al. The State of Intracellular Molecular Regulators during the Reconvalescence of Community-Acquired Pneumonia under the Influence of Microwaves at 1 GHz. Integr Med Int. 2017;4(3–4):171–80. doi: 10.1159/000486240

[44]

Voevodin A.A., Khadartsev A.A., Bondar S.S., et al. The State of Intracellular Molecular Regulators during the Reconvalescence of Community-Acquired Pneumonia under the Influence of Microwaves at 1 GHz // Integr. Med. Int. 2017. Vol. 4, No. 3–4. P. 171–180. doi: 10.1159/000486240

[45]

Lebedeva MN, Grishchenko AV. Peculiarities of the course of the repeated out hospital pneumonia by compulsory-duty servicemen. Voen Med Zh. 2009;330(7):24–8. (In Russ).

[46]

Лебедева М.Н., Грищенко А.В. Особенности течения повторных внебольничных пневмоний у военнослужащих по призыву // Военно-медицинский журнал. 2009. Т. 330, № 7. С. 24–28.

[47]

Zhu M–E, Wang Q, Zhou S, et al. Recombinant interleukin-2 stimulates lymphocyte recovery in patients with severe COVID-19. Exp Ther Med. 2021;21(3):227. doi: 10.3892/etm.2021.9658

[48]

Zhu M.–E., Wang Q., Zhou S., et al. Recombinant interleukin-2 stimulates lymphocyte recovery in patients with severe COVID-19 // Exp. Ther. Med. 2021. Vol. 21, No. 3. P. 227. doi: 10.3892/etm.2021.9658

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1197KB)

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/