Morphofunctional assessment of muscles of the lower leg and foot after autoneuroplasty of resection defect of tibial portion of the sciatic nerve and single intraoperative electrical neurostimulation in adult rats
Natal’ya A. Shchudlo , Tat’yana N. Varsegova , Tat’yana A. Stupina , Nadezhda V. Kubrak
I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (4) : 615 -626.
Morphofunctional assessment of muscles of the lower leg and foot after autoneuroplasty of resection defect of tibial portion of the sciatic nerve and single intraoperative electrical neurostimulation in adult rats
INTRODUCTION: There are no data in the literature on the effect of a single intraoperative electrical stimulation (IES) on the condition of the muscles of the lower leg and foot in the long-term period after autoplasty of the sciatic nerve in adult rats.
AIM: To study morphofunctional characteristics of muscles of the lower leg and foot after autoneuroplasty of a resection defect of the tibial portion of the sciatic nerve and a single IES in adult rats.
MATERIALS AND METHODS: The experiment was performed on 30 Wistar rats who underwent autoneuroplasty (AN) after resection of the tibial portion of the sciatic nerve. Fourteen rats underwent a 40-munite IES session (AN + IES series). In 16 rats IES was not conducted (AN series). At 4 and 6 months after the operation, the tibial nerve function index (TFI) was calculated by analyzing rats’ paw traces on a walking track. At the same time, light microscopy and histomorphometry of paraffin and epoxy sections of gastrocnemius and plantar interosseous muscles were performed. A conventional control was muscles of intact limbs.
RESULTS: Atrophy and endomysial fibrosis were less expressed in the gastrocnemius of the AN + IES series in comparison with AN series, the effect was mediated by enhancement of vascularization. In plantar interosseous muscles at 4 months after the operation, the volume density of blood vessels in the AN + IES series was 7.35 (5.49; 8.69), which was greater than in the AN series — 3.43 (2.02; 5.59), р = 0.0196. Diameters of muscle fibers and volume density of endomysium were comparable. At 6 months after the operation, endomysial fibrosis progressed in both series, but in the AN + IES series, myopathically altered muscle fibers were less common. After 6-month observation, TFI increased (-47.95) in the AN + IES series and became higher (p = 0.0339) than in the AN series, in which TFI became even lower (-93.64) than it was after 4 months (-81.95) of the experiment.
CONCLUSION: A single IES permits to reduce the denervation alterations in the gastrocnemius and plantar interosseous muscles conditioned by damage to the nerve and maturation, and also to improve the tibial nerve function index in the long term after autoneuroplasty.
rats / nerve / autoneuroplasty / intraoperative electrical stimulation / gastrocnemius, plantar interosseous muscles / histomorphometry
| [1] |
Kornfeld T, Vogt PM, Radtke C. Nerve grafting for peripheral nerve injuries with extended defect sizes. Wien Med Wochenschr. 2019;169(9–10):240–51. doi: 10.1007/s10354-018-0675-6 |
| [2] |
Kornfeld T., Vogt P.M., Radtke C. Nerve grafting for peripheral nerve injuries with extended defect sizes // Wien. Med. Wochenschr. 2019. Vol. 169, No. 9–10. Р. 240–251. doi: 10.1007/s10354-018-0675-6 |
| [3] |
Scholz T, Krichevsky A, Sumarto A, et al. Peripheral nerve injuries: an international survey of current treatments and future perspectives. J Reconstr Microsurg. 2009;25(6):339–44. doi: 10.1055/s-0029-1215529 |
| [4] |
Scholz T., Krichevsky A., Sumarto A., et al. Peripheral nerve injuries: an international survey of current treatments and future perspectives // J. Reconstr. Microsurg. 2009. Vol. 25, No. 6. Р. 339–344. doi: 10.1055/s-0029-1215529 |
| [5] |
Kuffler DP, Foy C. Restoration of Neurological Function Following Peripheral Nerve Trauma. Int J Mol Sci. 2020;21(5):1808. doi: 10.3390/ijms21051808 |
| [6] |
Kuffler D.P., Foy C. Restoration of Neurological Function Following Peripheral Nerve Trauma // Int. J. Mol. Sci. 2020. Vol. 21, No. 5. Р. 1808. doi: 10.3390/ijms21051808 |
| [7] |
Matejcik V, Steno J, Benetin J, et al. Results of peripheral nerve reconstruction by autograft. Bratisl Lek Listy. 2001;102(2):92–8. (In Engl., Slovak.). |
| [8] |
Matejcik V., Steno J., Benetin J., et al. Results of peripheral nerve reconstruction by autograft // Bratisl. Lek. Listy. 2001. Vol. 102, No. 2. Р. 92–98. |
| [9] |
Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int. 2014;2014:698256. doi: 10.1155/2014/698256 |
| [10] |
Grinsell D., Keating C.P. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies // Biomed Res. Int. 2014. Vol. 2014. Р. 698256. doi: 10.1155/2014/698256 |
| [11] |
Roh J, Schellhardt L, Keane GC, et al. Short-Duration, Pulsatile, Electrical Stimulation Therapy Accelerates Axon Regeneration and Recovery following Tibial Nerve Injury and Repair in Rats. Plast Reconstr Surg. 2022;149(4):681e–90e. doi: 10.1097/prs.0000000000008924 |
| [12] |
Roh J., Schellhardt L., Keane G.C., et al. Short-Duration, Pulsatile, Electrical Stimulation Therapy Accelerates Axon Regeneration and Recovery following Tibial Nerve Injury and Repair in Rats // Plast. Reconstr. Surg. 2022. Vol. 149, No. 4. Р. 681e–690e. doi: 10.1097/prs.0000000000008924 |
| [13] |
Calvey C, Zhou W, Stakleff KS, et al. Short-term electrical stimulation to promote nerve repair and functional recovery in a rat model. J Hand Surg Am. 2015;40(2):314–22. doi: 10.1016/j.jhsa.2014. 10.002 |
| [14] |
Calvey C., Zhou W., Stakleff K.S., et al. Short-term electrical stimulation to promote nerve repair and functional recovery in a rat model // J. Hand Surg. Am. 2015. Vol. 40, No. 2. Р. 314–322. doi: 10.1016/j.jhsa.2014.10.002 |
| [15] |
Koh GP, Fouad C, Lanzinger W, et al. Effect of Intraoperative Electrical Stimulation on Recovery after Rat Sciatic Nerve Isograft Repair. Neurotrauma Rep. 2020;1(1):181–91. doi: 10.1089/neur. 2020.0049 |
| [16] |
Koh G.P., Fouad C., Lanzinger W., et al. Effect of Intraoperative Electrical Stimulation on Recovery after Rat Sciatic Nerve Isograft Repair // Neurotrauma Rep. 2020. Vol. 1, No. 1. Р. 181–191. doi: 10.1089/neur.2020.0049 |
| [17] |
Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg. 1989;83(1):129–38. doi: 10.1097/00006534-198901000-00024 |
| [18] |
Bain J.R., Mackinnon S.E., Hunter D.A. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat // Plast. Reconstr. Surg. 1989. Vol. 83, No. 1. Р. 129–138. doi: 10.1097/00006534-198901000-00024 |
| [19] |
Contreras E, Bolívar S, Nieto–Nicolau N, et al. A novel decellularized nerve graft for repairing peripheral nerve long gap injury in the rat. Cell Tissue Res. 2022;390(3):355–66. doi: 10.1007/s00441-022-03682-1 |
| [20] |
Contreras E., Bolívar S., Nieto–Nicolau N., et al. A novel decellularized nerve graft for repairing peripheral nerve long gap injury in the rat // Cell Tissue Res. 2022. Vol. 390, No. 3. Р. 355–366. doi: 10.1007/s00441-022-03682-1 |
| [21] |
Kaneko A, Naito K, Nakamura S, et al. Influence of aging on the peripheral nerve repair process using an artificial nerve conduit. Exp Ther Med. 2021;21(2):168. doi: 10.3892/etm.2020.9599 |
| [22] |
Kaneko A., Naito K., Nakamura S., et al. Influence of aging on the peripheral nerve repair process using an artificial nerve conduit // Exp. Ther. Med. 2021. Vol. 21, No. 2. Р. 168. doi: 10.3892/etm.2020.9599 |
| [23] |
Aman M, Zimmermann KS, Thielen M, et al. An Epidemiological and Etiological Analysis of 5026 Peripheral Nerve Lesions from a European Level I Trauma Center. J Pers Med. 2022;12(10):1673. doi: 10.3390/jpm12101673 |
| [24] |
Aman M., Zimmermann K.S., Thielen M., et al. An Epidemiological and Etiological Analysis of 5026 Peripheral Nerve Lesions from a European Level I Trauma Center // J. Pers. Med. 2022. Vol. 12, No. 10. Р. 1673. doi: 10.3390/jpm12101673 |
| [25] |
Kumar D, Rizvi SI. Age-dependent paraoxonase 1 (PON1) activity and LDL oxidation in Wistar rats during their entire lifespan. Scientific World Journal. 2014;2014:538049. doi: 10.1155/ 2014/538049 |
| [26] |
Kumar D., Rizvi S.I. Age-dependent paraoxonase 1 (PON1) activity and LDL oxidation in Wistar rats during their entire lifespan // ScientificWorldJournal. 2014. Vol. 2014. Р. 538049. doi: 10.1155/2014/538049 |
| [27] |
Ghezzi AC, Cambri LT, Botezelli JD, et al. Metabolic syndrome markers in Wistar rats of different ages. Diabetol Metab Syndr. 2012; 4(1):16. doi: 10.1186/1758-5996-4-16 |
| [28] |
Ghezzi A.C., Cambri L.T., Botezelli J.D., et al. Metabolic syndrome markers in Wistar rats of different ages // Diabetol. Metab. Syndr. 2012. Vol. 4, No. 1. Р. 16. doi: 10.1186/1758-5996-4-16 |
| [29] |
Jones PE, Meyer RM, Faillace WJ, et al. Combat Injury of the Sciatic Nerve — An Institutional Experience. Mil Med. 2018;183(9–10): e434–41. doi: 10.1093/milmed/usy030 |
| [30] |
Jones P.E., Meyer R.M., Faillace W.J., et al. Combat Injury of the Sciatic Nerve — An Institutional Experience // Mil. Med. 2018. Vol. 183, No. 9–10. Р. e434–e441. doi: 10.1093/milmed/usy030 |
| [31] |
Pronskikh AA, Kharitonov KN, Korytkin AA, et al. Total hip arthroplasty in patients with acetabular fractures. Genij Ortopedii. 2021;27(5):620–7. (In Russ). doi: 10.18019/1028-4427-2021-27-5-620-627 |
| [32] |
Пронских А.А., Харитонов К.Н., Корыткин А.А., и др. Тотальное эндопротезирование у пациентов с последствиями переломов вертлужной впадины // Гений ортопедии. 2021. Т. 27, № 5. С. 620–627. doi: 10.18019/1028-4427-2021-27-5-620-627 |
| [33] |
Shnaider LS, Golenkov ОI, Turgunov EU, et al. Shortening subtrochanteric osteotomy of the femur in total hip arthroplasty in patients with congenital hip dislocation. Genij Ortopedii. 2020;26(3): 340–6. (In Russ). doi: 10.18019/1028-4427-2020-26-3-340-346 |
| [34] |
Шнайдер Л.С., Голенков О.И., Тургунов Э.У., и др. Укорачивающая подвертельная остеотомия бедренной кости при эндопротезировании тазобедренного сустава у пациентов с врожденным вывихом бедра // Гений ортопедии. 2020. Т. 26, № 3. С. 340–346. doi: 10.18019/1028-4427-2020-26-3-340-346 |
| [35] |
Pannérec A, Springer M, Migliavacca E, et al. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia. Aging (Albany NY). 2016;8(4):712–9. doi: 10.18632/aging.100926 |
| [36] |
Pannérec A., Springer M., Migliavacca E., et al. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia // Aging (Albany NY). 2016. Vol. 8, No. 4. Р. 712–729. doi: 10.18632/aging.100926 |
| [37] |
Janssen I, Heymsfield SB, Wang ZM, et al. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol (1985). 2000;89(1):81–8. doi: 10.1152/jappl.2000.89.1.81 |
| [38] |
Janssen I., Heymsfield S.B., Wang Z.M., et al. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr // J. Appl. Physiol. (1985). 2000. Vol. 89, No. 1. Р. 81–88. doi: 10.1152/jappl.2000.89.1.81 |
| [39] |
Tayebi SM, Siahkouhian M, Keshavarz M, et al. The Effects of High-Intensity Interval Training on Skeletal Muscle Morphological Changes and Denervation Gene Expression of Aged Rats. Monten J Sports Sci Med. 2019;8(2):39–45. doi: 10.26773/mjssm.190906 |
| [40] |
Tayebi S.M., Siahkouhian M., Keshavarz M., et al. The Effects of High-Intensity Interval Training on Skeletal Muscle Morphological Changes and Denervation Gene Expression of Aged Rats // Monten. J. Sports Sci. Med. 2019. Vol. 8, No. 2. Р. 39–45. doi: 10.26773/mjssm.190906 |
Shchudlo NA, Varsegova TN, Stupina TA, Kubrak NV
/
| 〈 |
|
〉 |