Breast Cancer Resistance Protein: Structure, Localization, Functions, Significance for Rational Pharmacotherapy

Natal’ya M. Popova , Aleksey V. Shchul’kin , Yuliya S. Tranova , Mariya I. Povetko , Aleksandr S. Polupanov , Sergey K. Pravkin , Alexandr A. Slepnev , Elena N. Yakusheva

I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (2) : 305 -314.

PDF (1308KB)
I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (2) :305 -314. DOI: 10.17816/PAVLOVJ384999
Reviews
review-article

Breast Cancer Resistance Protein: Structure, Localization, Functions, Significance for Rational Pharmacotherapy

Author information +
History +
PDF (1308KB)

Abstract

INTRODUCTION: Currently, investigation of efflux transport systems of an organism is an important scientific and practical task permitting to more deeply investigate the pharmacokinetics of medical drugs and to optimize pharmacotherapy of a number of diseases. The super family of ABC transporters plays a significant role in transport of biobiotics, the processes of absorption, distribution and excretion of medical drugs from an organism, in realization of undesired drug-drug interactions and development of pharmacoresistance. An important representative of this super family is breast cancer resistance protein (BCRP).

AIM: Systematization of the data on BCRP structure, localization, functions, substrates and modulators of its activity.

This literature review presents modern data on the molecular and spatial structure of BCRP, its localization in the cell, in organs and tissues. The data from studies of the functions of BCRP in an organism, of its role in the development of undesired drug-drug interactions at different stages of pharmacokinetics are summarized. An up-to-date list of medicinal drugs that are substrates and inhibitors of BCRP is given. Modern approaches to testing medical drugs for belonging to BCRP substrates or modulators of its activity are disclosed.

CONCLUSION: The significance of BCRP consists in the existence of a wide range of drugs that are its substrates or modulators of its activity. Upon that, of increasing significance is the investigation both of new and long-known medicinal substances for their belonging to substrates, inducers or inhibitors of breast cancer resistance protein, in order to increase the effectiveness of pharmacotherapy and reduce the risk of undesired drug interactions. Search for non-drug substrates and modulators of BCRP activity permits to obtain new markers for conducting effective studies of safe pharmacokinetics both in vitro and in vivo.

Keywords

breast cancer resistance protein / ABC transporters / drug resistance / drug-drug interactions / structure / inducers / inhibitors

Cite this article

Download citation ▾
Natal’ya M. Popova, Aleksey V. Shchul’kin, Yuliya S. Tranova, Mariya I. Povetko, Aleksandr S. Polupanov, Sergey K. Pravkin, Alexandr A. Slepnev, Elena N. Yakusheva. Breast Cancer Resistance Protein: Structure, Localization, Functions, Significance for Rational Pharmacotherapy. I.P. Pavlov Russian Medical Biological Herald, 2024, 32(2): 305-314 DOI:10.17816/PAVLOVJ384999

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Erokhina PD, Abalenikhina YuV, Shchulʹkin AV, et al. Study of influence of estradiol on the activity of P-glycoprotein in vitro. Nauka Molodykh (Eruditio Juvenium). 2020;8(3):329–36. (In Russ). doi: 10.23888/HMJ202083329-336

[2]

Ерохина П.Д., Абаленихина Ю.В., Щулькин А.В., и др. Изучение влияния эстрадиола на активность гликопротеина-Р in vitro // Наука молодых (Eruditio Juvenium). 2020. Т. 8, № 3. С. 329–336. doi: 10.23888/HMJ202083329-336

[3]

Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 1998; 95(26):15665–70. doi: 10.1073/pnas.95.26.15665

[4]

Doyle L.A., Yang W., Abruzzo L.V., et al. A multidrug resistance trans-porter from human MCF-7 breast cancer cells // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95, No. 26. P. 15665–15670. doi: 10.1073/pnas.95.26.15665

[5]

Drug Development and Drug Interactions: Possible Models for Decision-Making [Internet]. Available at: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-possible-models-decision-making. Accessed: 2023 May 05.

[6]

Drug Development and Drug Interactions: Possible Models for Decision-Making [Интернет]. Доступно по: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-possible-models-decision-making. Ссылка активна на 05.05.2023.

[7]

Ni Z, Bikadi Z, Rosenberg MF, et al. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab. 2010;11(7):603–17. doi: 10.2174/138920010792927325

[8]

Ni Z., Bikadi Z., Rosenberg M.F., et al. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2) // Curr. Drug Metab. 2010. Vol. 11, No. 7. P. 603–617. doi: 10.2174/138920010792927325

[9]

Manolaridis I, Jackson SM, Taylor NMI, et al. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature. 2018;563(7731):426–30. doi: 10.1038/s41586-018-0680-3

[10]

Manolaridis I., Jackson S.M., Taylor N.M.I., et al. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states // Nature. 2018. Vol. 563, No. 7731. P. 426–430. doi: 10.1038/s41586-018-0680-3

[11]

Sarankó H, Tordai H, Telbisz Á, et al. Effects of the gout-causing Q141K polymorphism and a CFTR ΔF508 mimicking mutation on the processing and stability of the ABCG2 protein. Biochem Biophys Res Commun. 2013;437(1):140–5. doi: 10.1016/j.bbrc.2013.06.054

[12]

Sarankó H., Tordai H., Telbisz Á., et al. Effects of the gout-causing Q141K polymorphism and a CFTR ΔF508 mimicking mutation on the processing and stability of the ABCG2 protein // Biochem. Biophys. Res. Commun. 2013. Vol. 437, No. 1. P. 140–145. doi: 10.1016/j.bbrc.2013.06.054

[13]

Macalou S, Robey RW, Jabor Gozzi G, et al. The linker region of breast cancer resistance protein ABCG2 is critical for coupling of ATP-dependent drug transport. Cell Mol Life Sci. 2016;73(9):1927–37. doi: 10.1007/s00018-015-2118-5

[14]

Macalou S., Robey R.W., Jabor Gozzi G., et al. The linker region of breast cancer resistance protein ABCG2 is critical for coupling of ATP-dependent drug transport // Cell. Mol. Life Sci. 2016. Vol. 73, No. 9. P. 1927–1937. doi: 10.1007/s00018-015-2118-5

[15]

Zattoni IF, Delabio LC, Dutra JP, et al. Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators. Eur J Med Chem. 2022;237:114346. doi: 10.1016/j.ejmech.2022.114346

[16]

Zattoni I.F., Delabio L.C., Dutra J.P., et al. Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators // Eur. J. Med. Chem. 2022. Vol. 237. P. 114346. doi: 10.1016/j.ejmech.2022.114346

[17]

Taylor NMI, Manolaridis I, Jackson SM, et al. Structure of the human multidrug transporter ABCG2. Nature. 2017;546(7659):504–9. doi: 10.1038/nature22345

[18]

Taylor N.M.I., Manolaridis I., Jackson S.M., et al. Structure of the human multidrug transporter ABCG2 // Nature. 2017. Vol. 546, No. 7659. P. 504–509. doi: 10.1038/nature22345

[19]

Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001;61(8):3458–64.

[20]

Maliepaard M., Scheffer G.L., Faneyte I.F., et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues // Cancer Res. 2001. Vol. 61, No. 8. P. 3458–3464.

[21]

Jonker JW, Merino G, Musters S, et al. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med. 2005;11(2):127–9. doi: 10.1038/nm1186

[22]

Jonker J.W., Merino G., Musters S., et al. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk // Nat. Med. 2005. Vol. 11, No. 2. P. 127–129. doi: 10.1038/nm1186

[23]

Naylor CS, Jaworska E, Branson K, et al. Side population/ABCG2-positive cells represent a heterogeneous group of haemopoietic cells: implications for the use of adult stem cells in transplantation and plasticity protocols. Bone Marrow Transplant. 2005;35(4):353–60. doi: 10.1038/sj.bmt.1704762

[24]

Naylor C.S., Jaworska E., Branson K., et al. Side population/ABCG2-positive cells represent a heterogeneous group of haemopoietic cells: implications for the use of adult stem cells in transplantation and plasticity protocols // Bone Marrow Transplant. 2005. Vol. 35, No. 4. P. 353–360. doi: 10.1038/sj.bmt.1704762

[25]

Natarajan K, Xie Y, Baer MR, et al. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol. 2012;83(8):1084–103. doi: 10.1016/j.bcp.2012.01.002

[26]

Natarajan K., Xie Y., Baer M.R., et al. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance // Biochem. Pharmacol. 2012. Vol. 83, No. 8. P. 1084–1103. doi: 10.1016/j.bcp.2012.01.002

[27]

Marin JJG., Monte MJ, Macias RIR, et al. Expression of chemoresistance-associated ABC proteins in hepatobiliary, pancreatic and gastrointestinal cancers. Cancers (Basel). 2022;14(14):3524. doi: 10.3390/cancers14143524

[28]

Marin J.J.G., Monte M.J., Macias R.I.R., et al. Expression of Chemoresistance-Associated ABC Proteins in Hepatobiliary, Pancreatic and Gastrointestinal Cancers // Cancers (Basel). 2022. Vol. 14, No. 14. P. 3524. doi: 10.3390/cancers14143524

[29]

Chen Y–L, Chen P–M, Lin P–Y, et al. ABCG2 Overexpression Confers Poor Outcomes in Hepatocellular Carcinoma of Elderly Patients. Anticancer Res. 2016;36(6):2983–8.

[30]

Chen Y.–L., Chen P.–M., Lin P.–Y., et al. ABCG2 Overexpression Confers Poor Outcomes in Hepatocellular Carcinoma of Elderly Patients // Anticancer Res. 2016. Vol. 36, No. 6. P. 2983–2988.

[31]

Sribenja S, Natthasirikul N, Vaeteewoottacharn K, et al. Thymosin β10 as a predictive biomarker of response to 5-fluorouracil chemotherapy in cholangiocarcinoma. Ann Hepatol. 2016;15(4): 577–85.

[32]

Sribenja S., Natthasirikul N., Vaeteewoottacharn K., et al. Thymosin β10 as a predictive biomarker of response to 5-fluorouracil chemotherapy in cholangiocarcinoma // Ann. Hepatol. 2016. Vol. 15, No. 4. P. 577–585.

[33]

Marin JJG, Cives–Losada C, Asensio M, et al. Mechanisms of anticancer drug resistance in hepatoblastoma. Cancers (Basel). 2019; 11(3):407. doi: 10.3390/cancers11030407

[34]

Marin J.J.G., Cives–Losada C., Asensio M., et al. Mechanisms of anticancer drug resistance in hepatoblastoma // Cancers (Basel). 2019. Vol. 11, No. 3. P. 407. doi: 10.3390/cancers11030407

[35]

Zhan D, Ni T, Wang H, et al. Celastrol inhibits the proliferation and decreases drug resistance of cisplatin-resistant gastric cancer SGC7901/DDP cells. Anticancer Agents Med Chem. 2022;22(2):270–9. doi: 10.2174/1871520621666210528144006

[36]

Zhan D., Ni T., Wang H., et al. Celastrol inhibits the proliferation and decreases drug resistance of cisplatin-resistant gastric cancer SGC7901/DDP cells // Anticancer Agents Med. Chem. 2022. Vol. 22, No. 2. P. 270–279. doi: 10.2174/1871520621666210528144006

[37]

Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport — an update. AAPS J. 2015;17(1):65–82. doi: 10.1208/s12248-014-9668-6

[38]

Mao Q., Unadkat J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport — an update // AAPS J. 2015. Vol. 17, No. 1. P. 65–82. doi: 10.1208/s12248-014-9668-6

[39]

Järvinen E, Deng F, Kidron H, et al. Efflux transport of estrogen glucuronides by human MRP2, MRP3, MRP4 and BCRP. J Steroid Biochem Mol Biol. 2018;178:99–107. doi: 10.1016/j.jsbmb.2017.11.007

[40]

Järvinen E., Deng F., Kidron H., et al. Efflux transport of estrogen glucuronides by human MRP2, MRP3, MRP4 and BCRP // J. Steroid Biochem. Mol. Biol. 2018. Vol. 178. P. 99–107. doi: 10.1016/j.jsbmb.2017.11.007

[41]

Xiong H, Callaghan D, Jones A, et al. ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides. J Neurosci. 2009;29(17):5463–75. doi: 10.1523/jneurosci.5103-08.2009

[42]

Xiong H., Callahan D., Jones A., et al. ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides // J. Neurosci. 2009. Vol. 29, No. 17. P. 5463–5475. doi: 10.1523/jneurosci.5103-08.2009

[43]

Eckenstaler R, Benndorf RA. The Role of ABCG2 in the Pathogenesis of Primary Hyperuricemia and Gout — An Update. Int J Mol Sci. 2021;22(13):6678. doi: 10.3390/ijms22136678

[44]

Eckenstaler R., Benndorf R.A. The Role of ABCG2 in the Pathogenesis of Primary Hyperuricemia and Gout — An Update // Int. J. Mol. Sci. 2021. Vol. 22, No. 13. P. 6678. doi: 10.3390/ijms22136678

[45]

Asashima T, Hori S, Ohtsuki S, et al. ATP-binding cassette transporter G2 mediates the efflux of phototoxins on the luminal membrane of retinal capillary endothelial cells. Pharm Res. 2006; 23(6):1235–42. doi: 10.1007/s11095-006-0067-2

[46]

Asashima T., Hori S., Ohtsuki S., et al. ATP-binding cassette transporter G2 mediates the efflux of phototoxins on the luminal membrane of retinal capillary endothelial cells // Pharm. Res. 2006. Vol. 23, No. 6. P. 1235–1242. doi: 10.1007/s11095-006-0067-2

[47]

Yang Z, Zhu W, Gao S, et al. Breast cancer resistance protein (ABCG2) determines distribution of genistein phase II metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein. Drug Metab Dispos. 2012;40(10):1883–93. doi: 10.1124/dmd.111.043901

[48]

Yang Z., Zhu W., Gao S., et al. Breast cancer resistance protein (ABCG2) determines distribution of genistein phase II metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein // Drug Metab. Dispos. 2012. Vol. 40, No. 10. P. 1883–1893. doi: 10.1124/dmd.111.043901

[49]

Álvarez AI, Vallejo F, Barrera B, et al. Bioavailability of the glucuronide and sulfate conjugates of genistein and daidzein in breast cancer resistance protein 1 knockout mice. Drug Metab Dispos. 2011;39(11):2008–12. doi: 10.1124/dmd.111.040881

[50]

Álvarez A.I., Vallejo F., Barrera B., et al. Bioavailability of the glucuronide and sulfate conjugates of genistein and daidzein in breast cancer resistance protein 1 knockout mice // Drug Metab Dispos. 2011. Vol. 39, № 11. P. 2008–2012. doi: 10.1124/dmd.111.040881

[51]

Poirier A, Portmann R, Cascais AC, et al. The need for human breast cancer resistance protein substrate and inhibition evaluation in drug discovery and development: why, when, and how? Drug Metab Dispos. 2014;42(9):1466–77. doi: 10.1124/dmd.114.058248

[52]

Poirier A., Portmann R., Cascais A.C., et al. The need for human breast cancer resistance protein substrate and inhibition evaluation in drug discovery and development: why, when, and how? // Drug Metab. Dispos. 2014. Vol. 42, No. 9. P. 1466–1477. doi: 10.1124/dmd.114.058248

[53]

Juan ME, González–Pons E, Planas JM. Multidrug resistance proteins restrain the intestinal absorption of trans-resveratrol in rats. J Nutr. 2010;140(3):489–95. doi: 10.3945/jn.109.114959

[54]

Juan M.E., González–Pons E., Planas J.M. Multidrug resistance proteins restrain the intestinal absorption of trans-resveratrol in rats // J. Nutr. 2010. Vol. 140, No. 3. P. 489–495. doi: 10.3945/jn.109.114959

[55]

Robillard KR, Hoque T, Bendayan R. Expression of ATP-binding cassette membrane transporters in rodent and human sertoli cells: relevance to the permeability of antiretroviral therapy at the blood-testis barrier. J Pharmacol Exp Ther. 2012;340(1):96–108. doi: 10.1124/jpet.111.186916

[56]

Robillard K.R., Hoque T., Bendayan R. Expression of ATP-binding cassette membrane transporters in rodent and human sertoli cells: relevance to the permeability of antiretroviral therapy at the blood-testis barrier // J. Pharmacol. Exp. Ther. 2012. Vol. 340, No. 1. P. 96–108. doi: 10.1124/jpet.111.186916

[57]

Van Herwaarden AE, Jonker JW, Wagenaar E, et al. The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Res. 2003;63(19):6447–52.

[58]

Van Herwaarden A.E., Jonker J.W., Wagenaar E., et al. The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine // Cancer Res. 2003. Vol. 63, No. 19. P. 6447–6452.

[59]

Van Herwaarden AE, Wagenaar E, Karnekamp B, et al. Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis. 2006;27(1):123–30. doi: 10.1093/carcin/bgi176

[60]

Van Herwaarden A.E., Wagenaar E., Karnekamp B., et al. Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk // Carcinogenesis. 2006. Vol. 27, No. 1. P. 123–130. doi: 10.1093/carcin/bgi176

[61]

Kranz J, Hessel S, Aretz J, et al. The role of the efflux carriers Abcg2 and Abcc2 for the hepatobiliary elimination of benzo[a]pyrene and its metabolites in mice. Chem Biol Interact. 2014;224:36–41. doi: 10.1016/j.cbi.2014.10.009

[62]

Kranz J., Hessel S., Aretz J., et al. The role of the efflux carriers Abcg2 and Abcc2 for the hepatobiliary elimination of benzo[a]pyrene and its metabolites in mice // Chem. Biol. Interact. 2014. Vol. 224. P. 36–41. doi: 10.1016/j.cbi.2014.10.009

[63]

Cooray HC, Janvilisri T, van Veen HW, et al. Interaction of the breast cancer resistance protein with plant polyphenol. Biochem Biophys Res Commun. 2004;317(1):269–75. doi: 10.1016/j.bbrc.2004.03.040

[64]

Cooray H.C., Janvilisri T., van Veen H.W., et al. Interaction of the breast cancer resistance protein with plant polyphenols // Biochem. Biophys. Res. Commun. 2004. Vol. 317, No. 1. P. 269–275. doi: 10.1016/j.bbrc.2004.03.040

[65]

Lee CA, O'Connor MA, Ritchie TK, et al. Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design. Drug Metab Dispos. 2015;43(4):490–509. doi: 10.1124/dmd.114.062174

[66]

Lee C.A., O'Connor M.A., Ritchie T.K., et al. Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design // Drug Metab. Dispos. 2015. Vol. 43, No. 4. P. 490–509. doi: 10.1124/dmd.114.062174

[67]

Erokhina PD, Mylʹnikov PY, Ganina SO, et al. Development and Validation of the Quantitative Determination of Atorvastatin in HEPG2 Cell Line Using High-Performance Liquid Chromatography with Mass-Spectrometric Detection. I. P. Pavlov Russian Medical Biological Herald. 2022;30(2):149–58. (In Russ). doi: 10.17816/PAVLOVJ100986

[68]

Ерохина П.Д., Мыльников П.Ю., Ганина С.О., и др. Разработка и валидация методики количественного определения аторвастатина в клетках линии HEPG2 методом высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием // Российский медико-биологический вестник имени академика И. П. Павлова. 2022. Т. 30, № 2. С. 149–158. doi: 10.17816/PAVLOVJ100986

[69]

De Bruin M, Miyake K, Litman T, et al. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Lett. 1999;146(2):117–26. doi: 10.1016/s0304-3835(99)00182-2

[70]

De Bruin M., Miyake K., Litman T., et al. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR // Cancer Lett. 1999. Vol. 146, No. 2. P. 117–126. doi: 10.1016/s0304-3835(99)00182-2

[71]

Kühnle M, Egger M, Müller C, et al. Potent and selective inhibitors of breast cancer resistance protein (ABCG2) derived from the p-glycoprotein (ABCB1) modulator tariquidar. J Med Chem. 2009;52(4):1190–7. doi: 10.1021/jm8013822

[72]

Kühnle M., Egger M., Müller C., et al. Potent and selective inhibitors of breast cancer resistance protein (ABCG2) derived from the p-glycoprotein (ABCB1) modulator tariquidar // J. Med. Chem. 2009. Vol. 52, No. 4. P. 1190–1197. doi: 10.1021/jm8013822

[73]

Weiss J, Rose J, Storch CH, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother. 2007;59(2):238–45. doi: 10.1093/jac/dkl474

[74]

Weiss J., Rose J., Storch C.H., et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs // J. Antimicrob. Chemother. 2007. Vol. 59, No. 2. P. 238–245. doi: 10.1093/jac/dkl474

[75]

Valdameri G, Genoux–Bastide E, Peres B, et al. Substituted chromones as highly potent nontoxic inhibitors, specific for the breast cancer resistance protein. J Med Chem. 2012;55(2):966–70. doi: 10.1021/jm201404w

[76]

Valdameri G., Genoux–Bastide E., Peres B., et al. Substituted chromones as highly potent nontoxic inhibitors, specific for the breast cancer resistance protein // J. Med. Chem. 2012. Vol. 55, No. 2. P. 966–970. doi: 10.1021/jm201404w

RIGHTS & PERMISSIONS

Eco-Vector

PDF (1308KB)

183

Accesses

0

Citation

Detail

Sections
Recommended

/