Teleneurorehabilitation in Neurologic Disorders and Diseases: Potentials, Effectiveness and Barriers

Anna N. Belova , Aleksey N. Kuznetsov , Vil'yam O. Sushin , Anastasiya M. Rezenova , Mariya A. Shabanova , Gennadiy E. Sheyko , Roman D. Anan'yev

I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (1) : 159 -170.

PDF (1593KB)
I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (1) : 159 -170. DOI: 10.17816/PAVLOVJ364502
Reviews
review-article

Teleneurorehabilitation in Neurologic Disorders and Diseases: Potentials, Effectiveness and Barriers

Author information +
History +
PDF (1593KB)

Abstract

INTRODUCTION: One of the important problems of modern rehabilitation is loss of the results achieved at different stages of rehabilitation because of interruption of the recovery processes and absence of home-based rehabilitation after discharge from a medical center. The maximal effect after rehabilitation can be achieved only on condition that an integrated continuous approach is provided including distant format through use of modern digital devices and technologies to ensure the double feedback between the patient and the doctor. In this context, telemedicine acquires special significance. Teleneurorehabilitation (TNR) is a field of telemedicine ensuring accessibility and continuity of rehabilitation care to patients living in geographically remote areas.

AIM: Reporting of brief information on the possibilities of using TNR technologies in neurologic disorders and diseases.

The review includes general concepts of TNR: conditions of realization range of technical means, principles and types of remote rehabilitation interventions. Brief information is given on the possibilities of using remote technologies in motor and cognitive disorders. The effectiveness of TNR and barriers to its implementation are considered.

CONCLUSION: A large number of studies prove the technical feasibility of TNR, however, the development and maintenance of a viable model of remote rehabilitation care integrated into the existing health care system requires scientific justification of the effectiveness and economic benefits of specific technologies in specific forms of neurologic pathology. The creation of an evidence base will permit to realize the potential of TNR and make the remote form of rehabilitation a new standard of medical care not only in the era of the pandemic of a new coronavirus infection, but also after the pandemic.

Keywords

telemedicine / teleneurorehabilitation / remote technologies / neurologic diseases

Cite this article

Download citation ▾
Anna N. Belova, Aleksey N. Kuznetsov, Vil'yam O. Sushin, Anastasiya M. Rezenova, Mariya A. Shabanova, Gennadiy E. Sheyko, Roman D. Anan'yev. Teleneurorehabilitation in Neurologic Disorders and Diseases: Potentials, Effectiveness and Barriers. I.P. Pavlov Russian Medical Biological Herald, 2024, 32(1): 159-170 DOI:10.17816/PAVLOVJ364502

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ryu S. Telemedicine: opportunities and developments in member states: report on the Second Global Survey on eHealth 2009 (Global Observatory for eHealth Series, Volume 2). Healthc Inform Res. 2012;18(2):153–5. doi: 10.4258/hir.2012.18.2.153

[2]

Ryu S. Telemedicine: opportunities and developments in member states: report on the Second Global Survey on eHealth 2009 (Global Observatory for eHealth Series, Volume 2) // Healthc Inform. Res. 2012. Vol. 18, No. 2. P. 153–155. doi: 10.4258/hir.2012.18.2.153

[3]

Sabrina MI, Defi IR. Telemedicine Guidelines in South East Asia — A Scoping Review. Front Neurol. 2021;11:581649. doi: 10.3389/fneur.2020.581649

[4]

Sabrina M.I., Defi I.R. Telemedicine Guidelines in South East Asia — A Scoping Review // Front. Neurol. 2021. Vol. 11. P. 581649. doi: 10.3389/fneur.2020.581649

[5]

Seron P, Oliveros M–J, Gutierrez–Arias R, et al. Effectiveness of Telerehabilitation in Physical Therapy: A Rapid Overview. Phys Ther. 2021;101(6):pzab053. doi: 10.1093/ptj/pzab053

[6]

Seron P., Oliveros M.–J., Gutierrez–Arias R., et al. Effectiveness of Telerehabilitation In Physical Therapy: A Rapid Overview // Phys. Ther. 2021. Vol. 101, No. 6. P. pzab053. doi: 10.1093/ptj/pzab053

[7]

Di Tella S, Pagliari C, Blasi V, et al. Integrated telerehabilitation approach in multiple sclerosis: a systematic review and meta-analysis. J Telemed Telecare. 2020;26(7–8):385–99. doi: 10.1177/1357633x19850381

[8]

Di Tella S., Pagliari C., Blasi V., et al. Integrated telerehabilitation approach in multiple sclerosis: a systematic review and meta- analysis // J. Telemed. Telecare. 2020. Vol. 26, No. 7–8. P. 385–399. doi: 10.1177/1357633x19850381

[9]

Klaic M, Galea MP. Using the Technology Acceptance Model to Identify Factors That Predict Likelihood to Adopt Tele-Neurorehabilitation. Front Neurol. 2020;11:580832. doi: 10.3389/fneur.2020.580832

[10]

Klaic M., Galea M.P. Using the Technology Acceptance Model to Identify Factors That Predict Likelihood to Adopt Tele-Neurorehabilitation // Front. Neurol. 2020. Vol. 11. P. 580832. doi: 10.3389/fneur.2020.580832

[11]

Maresca G, Maggio MG, De Luca R, et al. Tele-Neuro-Rehabilitation in Italy: State of the Art and Future Perspectives. Front Neurol. 2020;11:563375. doi: 10.3389/fneur.2020.563375

[12]

Maresca G., Maggio M.G., De Luca R., et al. Tele-neuro-rehabilitation in Italy: state of the art and future perspectives // Front. Neurol. 2020. Vol. 11. P. 563375. doi: 10.3389/fneur.2020.563375

[13]

Solomon DL, Dirlikov B, Shem KL, et al. The Time Burden of Specialty Clinic Visits in Persons With Neurologic Disease: A Case for Universal Telemedicine Coverage. Front Neurol. 2021;12:559024. doi: 10.3389/fneur.2021.559024

[14]

Solomon D.L., Dirlikov B., Shem K.L., et al. The Time Burden of Specialty Clinic Visits in Persons With Neurologic Disease: A Case for Universal Telemedicine Coverage // Front. Neurol. 2021. Vol. 12. P. 559024. doi: 10.3389/fneur.2021.559024

[15]

Srivastava A, Swaminathan A, Chockalingam M, et al.; The Indian Federation of Neurorehabilitation (IFNR) research task force. Tele-Neurorehabilitation During the COVID-19 Pandemic: Implications for Practice in Low- and Middle-Income Countries. Front Neurol. 2021;12:667925. doi: 10.3389/fneur.2021.667925

[16]

Srivastava A., Swaminathan A., Chockalingam M., et al.; The Indian Federation of Neurorehabilitation (IFNR) research task force. Tele-Neurorehabilitation During the COVID-19 Pandemic: Implications for Practice in Low- and Middle-Income Countries // Front. Neurol. 2021. Vol. 12. P. 667925. doi: 10.3389/fneur.2021.667925

[17]

Isernia S, Pagliari C, Jonsdottir J, et al. Efficiency and Patient- Reported Outcome Measures From Clinic to Home: the Human Empower-ment Aging and Disability Program for Digital-Health Rehabilitation. Front Neurol. 2019;10:1206. doi: 10.3389/fneur.2019.01206

[18]

Isernia S., Pagliari C., Jonsdottir J., et al. Efficiency and Patient-Reported Outcome Measures From Clinic to Home: the Human Empowerment Aging and Disability Program for Digital-Health Rehabilitation // Front. Neurol. 2019. Vol. 10. P. 1206. doi: 10.3389/fneur.2019.01206

[19]

Burdea GC, Grampurohit N, Kim N, et al. Feasibility of integrative games and novel therapeutic game controller for telerehabilitation of individuals chronic post-stroke living in the community. Top Stroke Rehabil. 2020;27(5):321–36. doi: 10.1080/10749357.2019.1701178

[20]

Burdea G.C., Grampurohit N., Kim N., et al. Feasibility of integrative games and novel therapeutic game controller for telerehabilitation of individuals chronic post-stroke living in the community // Top. Stroke Rehabil. 2020. Vol. 27, No. 5. P. 321–336. doi: 10.1080/10749357.2019.1701178

[21]

Maldonado–Díaz M, Vargas P, Vasquez R, et al. Teleneuro- rehabilitation program (virtual reality) for patients with balance disorders: descriptive study. BMC Sports Sci, Med Rehabil. 2021;13:83. doi: 10.1186/s13102-021-00314-z

[22]

Maldonado–Díaz M., Vargas P., Vasquez R., et al. Teleneuro-rehabilitation program (virtual reality) for patients with balance disorders: descriptive study // BMC Sports Sci., Med. Rehabil. 2021. Vol. 13. P. 83. doi: 10.1186/s13102-021-00314-z

[23]

Podury A, Raefsky SM, Dodakian L, et al. Social Network Structure is Related to Functional Improvement From Home-Based Tele-rehabilitation After Stroke. Front Neurol. 2021;12:603767. doi: 10.3389/fneur.2021.603767

[24]

Podury A., Raefsky S.M., Dodakian L., et al. Social Network Structure is Related to Functional Improvement From Home-Based Tele-rehabilitation After Stroke // Front. Neurol. 2021. Vol. 12. P. 603767. doi: 10.3389/fneur.2021.603767

[25]

Knapp A, Harst L, Hager S, et al. Use of Patient-Reported Outcome Measures and Patient-Reported Experience Measures Within Evaluation Studies of Telemedicine Applications: Systematic Review. J Med Internet Res. 2021;23(11):e30042. doi: 10.2196/30042

[26]

Knapp A., Harst L., Hager S., et al. Use of Patient-Reported Outcome Measures and Patient-Reported Experience Measures Within Evaluation Studies of Telemedicine Applications: Systematic Review // J. Med. Internet Res. 2021. Vol. 23, No. 11. P. e30042. doi: 10.2196/30042

[27]

Moccia M, Lanzillo R, Morra VB, et al. digital Technologies Web and Social Media Study Group of the Italian Society of Neurology. Assessing disability and relapses in multiple sclerosis on tele-neurology. Neurol Sci. 2020;41(6):1369–71. doi: 10.1007/s10072-020-04470-x

[28]

Moccia M., Lanzillo R., Morra V.B., et al.; Digital Technologies Web and Social Media Study Group of the Italian Society of Neurology. Assessing disability and relapses in multiple sclerosis on tele-neurology // Neurol. Sci. 2020. Vol. 41, No. 6. P. 1369–1371. doi: 10.1007/s10072-020-04470-x

[29]

Kim J, Sin M, Kim W–S, et al. Remote Assessment of Post-Stroke Elbow Function Using Internet-Based Telerobotics: A Proof-of-Concept Study. Front Neurol. 2020;11:583101. doi: 10.3389/fneur.2020.583101

[30]

Kim J., Sin M., Kim W.–S., et al. Remote Assessment of Post-Stroke Elbow Function Using Internet-Based Telerobotics: A Proof- of-Concept Study // Front. Neurol. 2020. Vol. 11. P. 583101. doi: 10.3389/fneur.2020.583101

[31]

Cherry CO, Chumbler NR, Richards K, et al. Expanding stroke telerehabilitation services to rural veterans: a qualitative study on patient experiences using the robotic stroke therapy delivery and monitoring system program. Disabil Rehabil Assist Technol. 2017;12(1): 21–7. doi: 10.3109/17483107.2015.1061613

[32]

Cherry C.O., Chumbler N.R., Richards K., et al. Expanding stroke telerehabilitation services to rural veterans: a qualitative study on patient experiences using the robotic stroke therapy delivery and monitoring system program // Disabil. Rehabil. Assist. Technol. 2017. Vol. 12, No. 1. P. 21–27. doi: 10.3109/17483107.2015.1061613

[33]

Nitkunan A, Paviour D, Nitkunan T. COVID-19: switching to remote neurology outpatient consultations. Pract Neurol. 2020;20(3):222–4. doi: 10.1136/practneurol-2020-002571

[34]

Nitkunan A., Paviour D., Nitkunan T. COVID-19: switching to remote neurology outpatient consultations // Pract. Neurol. 2020. Vol. 20, No. 3. P. 222–224. doi: 10.1136/practneurol-2020-002571

[35]

Ben–Pazi H, Beni–Adani L, Lamdan R. Accelerating Telemedicine for Cerebral Palsy During the COVID-19 Pandemic and Beyond. Front Neurol. 2020;11:746. doi: 10.3389/fneur.2020.00746

[36]

Ben–Pazi H., Beni–Adani L., Lamdan R. Accelerating Telemedicine for Cerebral Palsy During the COVID-19 Pandemic and Beyond // Front. Neurol. 2020. Vol. 11. P. 746. doi: 10.3389/fneur.2020.00746

[37]

Bigi S, Marrie RA, Till C, et al. The computer-based Symbol Digit Modalities Test: establishing age-expected performance in healthy controls and evaluation of pediatric MS patients. Neurol Sci. 2017;38(4): 635–42. doi: 10.1007/s10072-017-2813-0

[38]

Bigi S., Marrie R.A., Till C., et al. The computer-based Symbol Digit Modalities Test: establishing age-expected performance in healthy controls and evaluation of pediatric MS patients // Neurol. Sci. 2017. Vol. 38, No. 4. P. 635–642. doi: 10.1007/s10072-017-2813-0

[39]

Hobart J, Lamping D, Fitzpatrick R, et al. The Multiple Sclerosis Impact Scale (MSIS-29): a new patient-based outcome measure. Brain. 2001;124(Pt 5):962–73. doi: 10.1093/brain/124.5.962

[40]

Hobart J., Lamping D., Fitzpatrick R., et al. The Multiple Sclerosis Impact Scale (MSIS-29): a new patient-based outcome measure // Brain. 2001. Vol. 124, Pt. 5. P. 962–973. doi: 10.1093/brain/124.5.962

[41]

Laver KE, Adey–Wakeling Z, Crotty M, et al. Telerehabilitation services for stroke. Cochrane Database Syst Rev. 2020;1(1):CD010255. doi: 10.1002/14651858.cd010255.pub3

[42]

Laver K.E., Adey–Wakeling Z., Crotty M., et al. Telerehabilitation services for stroke // Cochrane Database Syst. Rev. 2020. Vol. 1, No. 1. P. CD010255. doi: 10.1002/14651858.cd010255.pub3

[43]

Dimer NA, do Canto–Soares N, Dos Santos–Teixeira L, et al. The COVID-19 pandemic and the implementation of telehealth in speech-language and hearing therapy for patients at home: an experience report. Codas. 2020;32(3):e20200144. doi: 10.1590/2317-1782/20192020144

[44]

Dimer N.A., do Canto–Soares N., Dos Santos–Teixeira L., et al. The COVID-19 pandemic and the implementation of telehealth in speech-language and hearing therapy for patients at home: an experience report // Codas. 2020. Vol. 32, No. 3. P. e20200144. doi: 10.1590/2317-1782/20192020144

[45]

Cikajlo I, Hukić A, Zajc D. Exergaming as Part of the Telerehabilitation Can Be Adequate to the Outpatient Training: Preliminary Findings of a Non-Randomized Pilot Study in Parkinson's Disease. Front Neurol. 2021;12:625225. doi: 10.3389/fneur.2021.625225

[46]

Cikajlo I., Hukić A., Zajc D. Exergaming as Part of the Telerehabilitation Can Be Adequate to the Outpatient Training: Preliminary Findings of a Non-Randomized Pilot Study in Parkinson's Disease // Front. Neurol. 2021. Vol. 12. P. 625225. doi: 10.3389/fneur.2021.625225

[47]

Deng H, Durfee WK, Nuckley DJ, et al. Complex versus simple ankle movement training in stroke using telerehabilitation: a randomized controlled trial. Physical Therapy. 2012;92(2):197–209. doi: 10.2522/ptj.20110018

[48]

Deng H., Durfee W.K., Nuckley D.J., et al. Complex versus simple ankle movement training in stroke using telerehabilitation: a randomized controlled trial // Physical therapy. 2012. Vol. 92, № 2. P. 197–209. doi: 10.2522/ptj.20110018

[49]

Van der Linden SD, Sitskoorn MM, Rutten G–JM, et al. Feasibility of the evidence-based cognitive telerehabilitation program Remind for patients with primary brain tumors. J Neurooncol. 2018;137(3):523–32. doi: 10.1007/s11060-017-2738-8

[50]

Van der Linden S.D., Sitskoorn M.M., Rutten G.–J.M., et al. Feasibility of the evidence-based cognitive telerehabilitation program Remind for patients with primary brain tumors // J. Neurooncol. 2018. Vol. 137, No. 3. P. 523–532. doi: 10.1007/s11060-017-2738-8

[51]

Cotelli M, Manenti R, Brambilla M, et al. Cognitive telerehabilitation in mild cognitive impairment, Alzheimer’s disease and frontotemporal dementia: a systematic review. J Telemed Telecare. 2019;25(2):67–79. doi: 10.1177/1357633x17740390

[52]

Cotelli M., Manenti R., Brambilla M., et al. Cognitive tele- rehabilitation in mild cognitive impairment, Alzheimer’s disease and frontotemporal dementia: a systematic review // J. Telemed. Telecare. 2019. Vol. 25, No. 2. P. 67–79. doi: 10.1177/1357633x17740390

[53]

Dial HR, Hinshelwood HA, Grasso SM, et al. Investigating the utility of teletherapy in individuals with primary progressive aphasia. Clin Interv Aging. 2019;14:453–71. doi: 10.2147/CIA.S178878

[54]

Dial H.R., Hinshelwood H.A., Grasso S.M., et al. Investigating the utility of teletherapy in individuals with primary progressive aphasia // Clin. Interv. Aging. 2019. Vol. 14. P. 453–471. doi: 10.2147/CIA.S178878

[55]

Yeroushalmi S, Maloni H, Costello K, et al. Telemedicine and multiple sclerosis: a comprehensive literature review. J Telemed Telecare. 2019;26(7–8):400–13. doi: 10.1177/1357633x19840097

[56]

Yeroushalmi S., Maloni H., Costello K., et al. Telemedicine and multiple sclerosis: a comprehensive literature review // J. Telemed. Telecare. 2019. Vol. 26, No. 7–8. P. 400–413. doi: 10.1177/1357633x19840097

[57]

Mantovani E, Zucchella C, Bottiroli S, et al. Telemedicine and Virtual Reality for Cognitive Rehabilitation: A Roadmap for the COVID-19 Pandemic. Front Neurol. 2020;11:926. doi: 10.3389/fneur.2020.00926

[58]

Mantovani E., Zucchella C., Bottiroli S., et al. Telemedicine and Virtual Reality for Cognitive Rehabilitation: A Roadmap for the COVID-19 Pandemic // Front. Neurol. 2020. Vol. 11. P. 926. doi: 10.3389/fneur.2020.00926

[59]

Mosca IE, Salvadori E, Gerli F, et al. Analysis of Feasibility, Adherence, and Appreciation of a Newly Developed Tele-Rehabilitation Program for People With MCI and VCI. Front Neurol. 2020;11:583368. doi: 10.3389/fneur.2020.583368

[60]

Mosca I.E., Salvadori E., Gerli F., et al. Analysis of Feasibility, Adherence, and Appreciation of a Newly Developed Tele-Rehabilitation Program for People With MCI and VCI // Front. Neurol. 2020. Vol. 11. P. 583368. doi: 10.3389/fneur.2020.583368

[61]

Weidner K, Lowman J. Telepractice for Adult Speech-Language Pathology Services: A Systematic Review. Perspect ASHA Spec Interest Groups. 2020;5(1):326–38. doi: 10.1044/2019_PERSP-19-00146

[62]

Weidner K., Lowman J. Telepractice for Adult Speech-Language Pathology Services: A Systematic Review // Perspect. ASHA Spec. Interest Groups. 2020. Vol. 5, No. 1. P. 326–338. doi: 10.1044/2019_PERSP-19-00146

[63]

Peñaloza C, Scimeca M, Gaona A, et al. Telerehabilitation for Word Retrieval Deficits in Bilinguals With Aphasia: Effectiveness and Reliability as Compared to In-person Language Therapy. Front Neurol. 2021;12:589330. doi: 10.3389/fneur.2021.589330

[64]

Peñaloza C., Scimeca M., Gaona A., et al. Telerehabilitation for Word Retrieval Deficits in Bilinguals With Aphasia: Effectiveness and Reliability as Compared to In-person Language Therapy // Front. Neurol. 2021. Vol. 12. P. 589330. doi: 10.3389/fneur.2021.589330

[65]

Milman L, Anderson E, Thatcher K, et al. Integrated Discourse Therapy After Glioblastoma: A Case Report of Face-To-Face and Tele-Neurorehabilitation Treatment Delivery. Front Neurol. 2020;11:583452. doi: 10.3389/fneur.2020.583452

[66]

Milman L., Anderson E., Thatcher K., et al. Integrated Discourse Therapy After Glioblastoma: A Case Report of Face-To-Face and Tele-NeuroRehabilitation Treatment Delivery // Front. Neurol. 2020. Vol. 11. P. 583452. doi: 10.3389/fneur.2020.583452

[67]

Larina OD. Restoration of speech in patients with aphasia via interactive technologies. Special Education. 2018;(2):40–9. (In Russ).

[68]

Ларина О.Д. Восстановление речи у пациентов с афазией с применением интерактивных средств // Специальное образование. 2018. № 2. С. 40–49.

[69]

Vellata C, Belli S, Balsamo F, et al. Effectiveness of Telerehabilitation on Motor Impairments, Non-Motor Symptoms and Compliance in Patients with Parkinson's Disease: A Systematic Review. Front Neurol. 2021;12:627999. doi: 10.3389/fneur.2021.627999

[70]

Vellata C., Belli S., Balsamo F., et al. Effectiveness of Telerehabilitation on Motor Impairments, Non-Motor Symptoms and Compliance in Patients with Parkinson's Disease: A Systematic Review // Front. Neurol. 2021. Vol. 12. P. 627999. doi: 10.3389/fneur.2021.627999

[71]

Raso MG, Arcuri F, Liperoti S, et al. Telemonitoring of Patients With Chronic Traumatic Brain Injury: A Pilot Study. Front Neurol. 2021;12:598777. doi: 10.3389/fneur.2021.598777

[72]

Raso M.G., Arcuri F., Liperoti S., et al. Telemonitoring of Patients With Chronic Traumatic Brain Injury: A Pilot Study // Front. Neurol. 2021. Vol. 12. P. 598777. doi: 10.3389/fneur.2021.598777

[73]

Yi JS, Pittman CA, Price CL, et al. Telemedicine and dementia care: a systematic review of barriers and facilitators. J Am Med Dir Assoc. 2021;22(7):1396–402.e18. doi: 10.1016/j.jamda.2021.03.015

[74]

Yi J.S., Pittman C.A., Price C.L., et al. Telemedicine and Dementia Care: A Systematic Review of Barriers and Facilitators // J. Am. Med. Dir. Assoc. 2021. Vol. 22, No. 7. P. 1396–1402.e18. doi: 10.1016/j.jamda.2021.03.015

[75]

Di Lieto MC, Pecini C, Brovedani P, et al. Adaptive Working Memory Training Can Improve Executive Functioning and Visuo-Spatial Skills in Children With Pre-term Spastic Diplegia. Front Neurol. 2021;11:601148. doi: 10.3389/fneur.2020.601148

[76]

Di Lieto M.C., Pecini C., Brovedani P., et al. Adaptive Working Memory Training Can Improve Executive Functioning and Visuo-Spatial Skills in Children With Pre-term Spastic Diplegia // Front. Neurol. 2021. Vol. 11. P. 601148. doi: 10.3389/fneur.2020.601148

[77]

Laver KE, Adey–Wakeling Z, Crotty M, et al. Telerehabilitation services for stroke. Cochrane Database Syst Rev. 2020;1(1):CD010255. doi: 10.1002/14651858.cd010255.pub3

[78]

Laver K.E., Adey–Wakeling Z., Crotty M., et al. Telerehabilitation services for stroke // Cochrane Database Syst. Rev. 2020. Vol. 1, No. 1. P. CD010255. doi: 10.1002/14651858.cd010255.pub3

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1593KB)

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/