Pathophysiological mechanisms of resistive breathing

Yury Yu. Byalovsky , Irina S. Rakitina

I.P. Pavlov Russian Medical Biological Herald ›› 2021, Vol. 29 ›› Issue (2) : 219 -226.

PDF (511KB)
I.P. Pavlov Russian Medical Biological Herald ›› 2021, Vol. 29 ›› Issue (2) : 219 -226. DOI: 10.17816/PAVLOVJ34788
Original study
research-article

Pathophysiological mechanisms of resistive breathing

Author information +
History +
PDF (511KB)

Abstract

AIM: This study aimed to explore the pathophysiological mechanisms of resistive breathing by using a model of a conditioned respiratory reflex to external resistance to breathing.

MATERIALS AND METHODS: Inspiratory resistive loads were used 11, 28, 54, and 78 cmAq/l/s to model a conditioned respiratory reflex. External respiration was parametrized on the basis of the analysis of motor and ventilatory outputs. Conditioned signals were pure sounds exceeding the threshold of perception by 10 db at 2000 Hz frequency. All the test persons were divided into two groups (large and small groups) according to the initial reinforcement value. (1) In the large group (37 individuals), the conditioned reflex was formed from 11 cmAq/l/s that was subsequently increased stepwise in the load to 76 cmAq/l/s. (2) In the small group (18 individuals), the initial reinforcements were different gradations of resistive loads, with a stepwise transition to the other parameters of an unconditioned stimulus. The period of the isolated application of a conditioned signal (CS) was 20 s, the interval between signals was not fixed, varying from 2 min to 4 min. Six to eight combinations of the conditioned and unconditioned stimuli were used for 1 day of the experiment.

RESULTS: The increase in the added respiratory resistance was associated with the pronounced reduction of pulmonary and alveolar ventilation, that is, with the hypoventilation type of resistive load realization. Changes in ventilation during the isolated application of a conditioned signal had an alternative character. In particular, as the reinforcement factor increased, a pronounced shift to hyperventilation was noted.

CONCLUSION: The reinforcement value of the conditioned reflex changed stepwise, thereby significantly restructuring the proportion between the effectiveness of the adaptive activity in the realization of external resistance to inspiration (the time of stay under a certain load) and its physiological cost (totalities of the deviations of physiological and energy parameters).

Keywords

added respiratory resistance / conditioned respiratory reflex / reinforcement value

Cite this article

Download citation ▾
Yury Yu. Byalovsky, Irina S. Rakitina. Pathophysiological mechanisms of resistive breathing. I.P. Pavlov Russian Medical Biological Herald, 2021, 29(2): 219-226 DOI:10.17816/PAVLOVJ34788

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chuchalin AG, editor. Respiratornaya meditsina. 2nd ed. Moscow: Litterra; 2017. Vol. 3. (In Russ).

[2]

Чучалин А.Г., ред. Респираторная медицина. 2-е изд. М.: Литтерра; 2017. Т. 3.

[3]

Petrash AA, Sotnikov AV. History of tracheal intubation: from first mentions to modern thoracic anesthesiology. Russian Journal of Anaesthesiology and Reanimatology. 2018;(3):33-40. (In Russ). doi: 10.17116/anaesthesiology201803133

[4]

Петраш А.А., Сотников А.В. Интубация трахеи: от истоков до современной торакальной анестезиологии // Анестезиология и реаниматология. 2018. № 3. С. 33-40. doi: 10.17116/anaesthesiology201803133

[5]

Hehua Z, Qing C, Shanyan G, et al. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. Environmental Research. 2017;159:519-30. doi: 10.1016/j.envres.2017.08.038

[6]

Hehua Z., Qing C., Shanyan G., et al. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review // Environmental Research. 2017. Vol. 159. P. 519-530. doi: 10.1016/j.envres.2017.08.038

[7]

Byalovskiy YuYu, Bulatetskiy SV. Fiziologicheskiye mekhanizmy rezistivnogo dykhaniya cheloveka. Voronezh: RITM; 2018. (In Russ).

[8]

Бяловский Ю.Ю., Булатецкий С.В. Физиологические механизмы резистивного дыхания человека. Воронеж: РИТМ; 2018.

[9]

Byalovskij YuYu, Abrosimov VN. Pnevmaticheskij dozator vneshnego soprotivleniya dyhaniyu. Patent RUS № 2071790. 20.01.1997. (In Russ).

[10]

Бяловский Ю.Ю., Абросимов В.Н. Пневматический дозатор внешнего сопротивления дыханию. Патент РФ на изобретение № 2071790. 20.01.1997.

[11]

Aleksandrova NP. Mekhanizmy kompensatornykh reaktsiy dykhatel’noy sistemy na inspiratornyye rezistivnyye nagruzki [dissertation]. Saint-Petersburg; 2003. (In Russ).

[12]

Александрова Н.П. Механизмы компенсаторных реакций дыхательной системы на инспираторные резистивные нагрузки. Дис. … д-ра мед. наук. СПб.; 2003.

[13]

Lin SL, Chang HC, Wu CL. Simulation of Mechanical resistive Loading on an optimal Respiratory Control Model with Added Dead Space and CO2 Breathing. Applied Mathematical Modelling. 2017;47:796-810. doi: 10.1016/j.apm.2016.10.029

[14]

Lin S.L., Chang H.C., Wu C.L. Simulation of Mechanical resistive Loading on an optimal Respiratory Control Model with Added Dead Space and CO2 Breathing // Applied Mathematical Modelling. 2017. Vol. 47. Р. 796-810. doi: 10.1016/j.apm.2016.10.029

[15]

Segizbaeva MO, Aleksandrova NP. Inspiratory Muscle Resistance to Fatigue during Exercise and Simulated Airway Obstruction. Fiziologiya Cheloveka. 2014;40(6):114-22. (In Russ). doi: 10.7868/s0131164614050130

[16]

Сегизбаева М.О., Александрова Н.П. Оценка устойчивости разных групп инспираторных мышц к утомлению при физической нагрузке на фоне моделируемой обструкции дыхательных путей // Физиология человека. 2014. Т. 40, № 6. C. 114-122. doi: 10.7868/s0131164614050130

[17]

Byalovskiy YY. Conventional respiratory reflex to increased respiratory resistance as an experimental model of adaptive activity. I.P. Pavlov Russian Medical Biological Herald. 2012;(2):75-84. (In Russ).

[18]

Бяловский Ю.Ю. Условный дыхательный рефлекс на увеличенное сопротивление дыханию как экспериментальная модель адаптивной деятельности // Российский медико-биологический вестник имени академика И.П. Павлова. 2012. № 2. С. 75-84.

[19]

Segizbaeva MO, Aleksandrova NP. The evaluation of inspiratory muscle function by measuring of «tension — time» index. Ul’yanovskiy Mediko-Biologicheskiy Zhurnal. 2014;(2):78-84. (In Russ).

[20]

Сегизбаева М.О., Александрова Н.П. Применение индекса «напряжение — время» для оценки функционального состояния инспираторных мышц // Ульяновский медико-биологический журнал. 2014. № 2. C. 78-84.

RIGHTS & PERMISSIONS

Byalovsky Y.

AI Summary AI Mindmap
PDF (511KB)

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/