Pathogenetic Mechanisms of Peristalsis Disorders in Chronic Constipation
Tat'yana I. Shevchenko , Danil S. Shvorob , Arina A. Abramyan , Il'ya S. Grekov
I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (1) : 111 -120.
Pathogenetic Mechanisms of Peristalsis Disorders in Chronic Constipation
INTRODUCTION: Chronic constipation is one of the most pressing problems in the contemporary coloproctology, which is observed in 14%–16% of the population of developed countries. The causes of chronic constipation widely vary from functional to organic. Pathogenesis of this syndrome is based on peristalsis disorders.
AIM: Analysis and systematization of the relevant literature data on pathogenetic mechanisms of disorders in peristalsis in chronic constipation.
Peristalsis is controlled by the influence of the sympathetic and parasympathetic divisions of the autonomic nervous system on the enteric nervous system. The latter, in turn, is regulated by a complex interaction of nerve cells (afferent, motor, mechanosensitive neurons, interneurons, glial cells) with auxiliary cells (enterochromaffin, interstitial, mast cells, fibroblasts, immune cells, endothelium). The intercellular relations provide homeostasis of ions, hormones and neurotransmitters.
CONCLUSION: A disorder in any of the numerous regulatory mechanisms can lead to chronic constipation, and understanding of many-sided pathways of the pathogenesis of the disease will permit to justify and apply the best treatment methods.
chronic constipation / colostasis / pathogenesis / peristalsis
| [1] |
Bayliss WM, Starling EH. The movements and innervation of the small intestine. J Physiol. 1899;24(2):99–143. doi: 10.1113/jphysiol.1899.sp000752 |
| [2] |
Bayliss W.M., Starling E.H. The movements and innervation of the small intestine // J. Physiol. 1899. Vol. 24, No. 2. P. 99–143. doi: 10.1113/jphysiol.1899.sp000752 |
| [3] |
Flemming G. Chronic Functional Constipation in Infants and Children. Handb Exp Pharmacol. 2020;261:377–96. doi: 10.1007/164_2019_223 |
| [4] |
Flemming G. Chronic Functional Constipation in Infants and Children // Handb. Exp. Pharmacol. 2020. Vol. 261. P. 377–396. doi: 10.1007/164_2019_223 |
| [5] |
Bharucha AE, Lacy BE. Mechanisms, Evaluation, and Management of Chronic Constipation. Gastroenterology. 2020;158(5):1232–49.e3. doi: 10.1053/j.gastro.2019.12.034 |
| [6] |
Bharucha A.E., Lacy B.E. Mechanisms, Evaluation, and Management of Chronic Constipation // Gastroenterology. 2020. Vol. 158, No. 5. P. 1232–1249.e3. doi: 10.1053/j.gastro.2019.12.034 |
| [7] |
Camilleri M, Ford AC, Mawe GM, et al. Chronic constipation. Nat Rev Dis Primers. 2017;3:17095. doi: 10.1038/nrdp.2017.95 |
| [8] |
Camilleri M., Ford A.C., Mawe G.M., et al. Chronic constipation // Nat. Rev. Dis. Primers. 2017. Vol. 3. P. 17095. doi: 10.1038/nrdp.2017.95 |
| [9] |
Avetisyan M, Schill EM, Heuckeroth RO. Building a second brain in the bowel. J Clin Invest. 2015;125(3):899–907. doi: 10.1172/jci76307 |
| [10] |
Avetisyan M., Schill E.M., Heuckeroth R.O. Building a second brain in the bowel // J. Clin. Invest. 2015. Vol. 125, No. 3. P. 899–907. doi: 10.1172/jci76307 |
| [11] |
Grubišić V, Gulbransen BD. Enteric glial activity regulates secretomotor function in the mouse colon but does not acutely affect gut permeability. J Physiol. 2017;595(11):3409–24. doi: 10.1113/jp273492 |
| [12] |
Grubišić V., Gulbransen B.D. Enteric glial activity regulates secretomotor function in the mouse colon but does not acutely affect gut permeability // J. Physiol. 2017. Vol. 595, No. 11. P. 3409–3424. doi: 10.1113/jp273492 |
| [13] |
Reynaud Y, Fakhry J, Fothergill L, et al. The chemical coding of 5-hydroxytryptamine containing enteroendocrine cells in the mouse gastrointestinal tract. Cell Tissue Res. 2016;364(3):489–97. doi: 10.1007/s00441-015-2349-7 |
| [14] |
Reynaud Y., Fakhry J., Fothergill L., et al. The chemical coding of 5-hydroxytryptamine containing enteroendocrine cells in the mouse gastrointestinal tract // Cell Tissue Res. 2016. Vol 364, No. 3 P. 489–497. doi: 10.1007/s00441-015-2349-7 |
| [15] |
Bellono NW, Bayrer JR, Leitch DB, et al. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell. 2017;170(1):185–98.e16. doi: 10.1016/j.cell.2017.05.034 |
| [16] |
Bellono N.W., Bayrer J.R., Leitch D.B., et al. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways // Cell. 2017. Vol. 170, No. 1. P. 185–198.e16. doi: 10.1016/j.cell.2017.05.034 |
| [17] |
Wang F, Knutson K, Alcaino C, et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol. 2017;595(1):79–91. doi: 10.1113/jp272718 |
| [18] |
Wang F., Knutson K., Alcaino C., et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces // J. Physiol. 2017. Vol. 595, No. 1. P. 79–91. doi: 10.1113/jp272718 |
| [19] |
Cohen M, Cazals–Hatem D, Duboc H, et al. Evaluation of interstitial cells of Cajal in patients with severe colonic inertia requiring surgery: a clinical-pathological study. Colorectal Dis. 2017;19(5):462–7. doi: 10.1111/codi.13511 |
| [20] |
Cohen M., Cazals–Hatem D., Duboc H., et al. Evaluation of interstitial cells of Cajal in patients with severe colonic inertia requiring surgery: a clinical-pathological study // Colorectal Dis. 2017. Vol. 19, No. 5. P. 462–467. doi: 10.1111/codi.13511 |
| [21] |
Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev. 2014;94(3):859–907. doi: 10.1152/physrev.00037.2013 |
| [22] |
Sanders K.M., Ward S.M., Koh S.D. Interstitial cells: regulators of smooth muscle function // Physiol. Rev. 2014. Vol. 94, No. 3. P. 859–907. doi: 10.1152/physrev.00037.2013 |
| [23] |
McClain J, Grubišić V, Fried D, et al. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology. 2014;146(2):497–507.e1. doi: 10.1053/j.gastro.2013.10.061 |
| [24] |
McClain J., Grubišić V., Fried D., et al. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice // Gastroenterology. 2014. Vol. 146, No. 2. P. 497–507.e1. doi: 10.1053/j.gastro.2013.10.061 |
| [25] |
Shimizu K, Ogura H, Matsumoto N. Interstitial cells of Cajal are diminished in critically ill patients: Autopsy cases. Nutrition. 2020;70:110591. doi: 10.1016/j.nut.2019.110591 |
| [26] |
Shimizu K., Ogura H., Matsumoto N., et al. Interstitial cells of Cajal are diminished in critically ill patients: Autopsy cases // Nutrition. 2020. Vol. 70. P. 110591. doi: 10.1016/j.nut.2019.110591 |
| [27] |
Wang H, Zhang Y, Liu W, et al. Interstitial cells of Cajal reduce in number in recto-sigmoid Hirschsprung's disease and total colonic aganglionosis. Neurosci Lett. 2009;451(3):208–11. doi: 10.1016/j.neulet. 2009.01.015 |
| [28] |
Wang H., Zhang Y., Liu W., et al. Interstitial cells of Cajal reduce in number in recto-sigmoid Hirschsprung's disease and total colonic aganglionosis // Neurosci. Lett. 2009. Vol 451, No. 3. P. 208–211. doi: 10.1016/j.neulet.2009.01.015 |
| [29] |
Yu CS, Kim HC, Hong HK, et al. Evaluation of myenteric ganglion cells and interstitial cells of Cajal in patients with chronic idiopathic constipation. Int J Colorectal Dis. 2002;17(4):253–8. doi: 10.1007/s00384-001-0380-5 |
| [30] |
Yu C.S., Kim H.C., Hong H.K., et al. Evaluation of myenteric ganglion cells and interstitial cells of Cajal in patients with chronic idiopathic constipation // Int. J. Colorectal Dis. 2002. Vol. 17, No. 4. P. 253–258. doi: 10.1007/s00384-001-0380-5 |
| [31] |
Zhou X, Qian H, Zhang D, et al. Inhibition of autophagy of Cajal mesenchymal cells by gavage of tong bian decoction based on the rat model of chronic transit constipation. Saudi J Biol Sci. 2020;27(2):623–8. doi: 10.1016/j.sjbs.2019.11.040 |
| [32] |
Zhou X., Qian H., Zhang D., et al. Inhibition of autophagy of Cajal mesenchymal cells by gavage of tong bian decoction based on the rat model of chronic transit constipation // Saudi J. Biol. Sci. 2020. Vol. 27, No. 2. P. 623–628. doi: 10.1016/j.sjbs.2019.11.040 |
| [33] |
Foong D, Zhou J, Zarrouk A, et al. Understanding the Biology of Human Interstitial Cells of Cajal in Gastrointestinal Motility. Int J Mol Sci. 2020;21(12):4540. doi: 10.3390/ijms21124540 |
| [34] |
Foong D., Zhou J., Zarrouk A., et al. Understanding the Biology of Human Interstitial Cells of Cajal in Gastrointestinal Motility // Int. J. Mol. Sci. 2020. Vol. 21, No. 12. P. 4540. doi: 10.3390/ijms21124540 |
| [35] |
Bassotti G, Chistolini F, Battaglia E, et al. Are colonic regular contractile frequency patterns in slow transit constipation a relevant pathophysiological phenomenon. Dig Liver Dis. 2003;35(8):552–6. doi: 10.1016/s1590-8658(03)00271-8 |
| [36] |
Bassotti G., Chistolini F., Battaglia E., et al. Are colonic regular contractile frequency patterns in slow transit constipation a relevant pathophysiological phenomenon // Dig. Liver Dis. 2003. Vol. 35, No. 8. P. 552–556. doi: 10.1016/s1590-8658(03)00271-8 |
| [37] |
Rao SS, Sadeghi P, Beaty J, et al. Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol. 2001;280(4):G629–39. doi: 10.1152/ajpgi.2001.280.4.g629 |
| [38] |
Rao S.S., Sadeghi P., Beaty J., et al. Ambulatory 24-h colonic manometry in healthy humans // Am. J. Physiol. Gastrointest. Liver Physiol. 2001. Vol. 280, No. 4. P. G629–G639. doi: 10.1152/ajpgi.2001. 280.4.g629 |
| [39] |
Dinning PG, Wiklendt L, Maslen L, et al. Colonic motor abnormalities in slow transit constipation defined by high resolution, fibre-optic manometry. Neurogastroenterol Motil. 2015;27(3):379–88. doi: 10.1111/nmo.12502 |
| [40] |
Dinning P.G., Wiklendt L., Maslen L., et al. Colonic motor abnormalities in slow transit constipation defined by high resolution, fibre-optic manometry // Neurogastroenterol. Motil. 2015. Vol. 27, No. 3. P. 379–388. doi: 10.1111/nmo.12502 |
| [41] |
LePard KJ, Ren J, Galligan JJ. Presynaptic modulation of cholinergic and non-cholinergic fast synaptic transmission in the myenteric plexus of guinea pig ileum. Neurogastroenterol Motil. 2004;16(3):355–64. doi: 10.1111/j.1365-2982.2004.00505.x |
| [42] |
LePard K.J., Ren J., Galligan J.J. Presynaptic modulation of cholinergic and non-cholinergic fast synaptic transmission in the myenteric plexus of guinea pig ileum // Neurogastroenterol. Motil. 2004. Vol. 16, No. 3. P. 355–364. doi: 10.1111/j.1365-2982.2004.00505.x |
| [43] |
Bonaz B, Bazin T, Pellissier S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci. 2018;12:49. doi: 10.3389/fnins.2018.00049 |
| [44] |
Bonaz B., Bazin T., Pellissier S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis // Front. Neurosci. 2018. Vol. 12. P. 49. doi: 10.3389/fnins.2018.00049 |
| [45] |
Smith–Edwards KM, Najjar SA, Edwards BS, et al. Extrinsic Primary Afferent Neurons Link Visceral Pain to Colon Motility Through a Spinal Reflex in Mice. Gastroenterology. 2019;157(2):522–36. doi: 10.1053/j.gastro.2019.04.034 |
| [46] |
Smith–Edwards K.M., Najjar S.A., Edwards B.S., et al. Extrinsic Primary Afferent Neurons Link Visceral Pain to Colon Motility Through a Spinal Reflex in Mice // Gastroenterology. 2019. Vol. 157, No. 2. P. 522–536. doi: 10.1053/j.gastro.2019.04.034 |
| [47] |
Schneider S, Wright CM, Heuckeroth RO. Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function. Annu Rev Physiol. 2019;81:235–59. doi: 10.1146/annurev-physiol-021317-121515 |
| [48] |
Schneider S., Wright C.M., Heuckeroth R.O. Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function // Annu. Rev. Physiol. 2019. Vol. 81. P. 235–259. doi: 10.1146/annurev-physiol-021317-121515 |
| [49] |
Beck K, Voussen B, Reigl A, et al. Cell-specific effects of nitric oxide on the efficiency and frequency of long distance contractions in murine colon. Neurogastroenterol Motil. 2019;31(6):e13589. doi: 10.1111/nmo.13589 |
| [50] |
Beck K., Voussen B., Reigl A., et al. Cell-specific effects of nitric oxide on the efficiency and frequency of long distance contractions in murine colon // Neurogastroenterol. Motil. 2019. Vol. 31, No. 6. P. e13589. doi: 10.1111/nmo.13589 |
| [51] |
Martinez–Cutillas M, Gil V, Mañé N, et al. Potential role of the gaseous mediator hydrogen sulphide (H2S) in inhibition of human colonic contractility. Pharmacol Res. 2015;93:52–63. doi: 10.1016/j.phrs. 2015.01.002 |
| [52] |
Martinez–Cutillas M., Gil V., Mañé N., et al. Potential role of the gaseous mediator hydrogen sulphide (H2S) in inhibition of human colonic contractility // Pharmacol. Res. 2015. Vol. 93. P. 52–63. doi: 10.1016/j.phrs.2015.01.002 |
| [53] |
Ahmed M, Ahmed S. Functional, Diagnostic and Therapeutic Aspects of Gastrointestinal Hormones. Gastroenterology Res. 2019; 12(5):233–44. doi: 10.14740/gr1219 |
| [54] |
Ahmed M., Ahmed S. Functional, Diagnostic and Therapeutic Aspects of Gastrointestinal Hormones // Gastroenterology Res. 2019. Vol. 12, No. 5. P. 233–244. doi: 10.14740/gr1219 |
| [55] |
Ceccotti C, Giaroni C, Bistoletti M, et al. Neurochemical characterization of myenteric neurons in the juvenile gilthead sea bream (Sparus aurata) intestine. PLoS One. 2018;13(8):e0201760. doi: 10.1371/journal.pone.0201760 |
| [56] |
Ceccotti C., Giaroni C., Bistoletti M., et al. Neurochemical characterization of myenteric neurons in the juvenile gilthead sea bream (Sparus aurata) intestine // PLoS One. 2018. Vol. 13, No. 8. P. e0201760. doi: 10.1371/journal.pone.0201760 |
| [57] |
Dimidi E, Christodoulides S, Scott SM, et al. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation. Adv Nutr. 2017;8(3):484–94. doi: 10.3945/an.116.014407 |
| [58] |
Dimidi E., Christodoulides S., Scott S.M., et al. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation // Adv. Nutr. 2017. Vol. 8, No. 3. P. 484–494. doi: 10.3945/an.116.014407 |
| [59] |
Li Y–Y, Li Y–N, Ni J–B, et al. Involvement of cannabinoid-1 and cannabinoid-2 receptors in septic ileus. Neurogastroenterol Motil. 2010;22(3):350–e88. doi: 10.1111/j.1365-2982.2009.01419.x |
| [60] |
Li Y.–Y., Li Y.–N., Ni J.–B., et al. Involvement of cannabinoid-1 and cannabinoid-2 receptors in septic ileus // Neurogastroenterol. Motil. 2010. Vol. 22, No. 3. P. 350–e388. doi: 10.1111/j.1365-2982. 2009.01419.x |
| [61] |
Barrett KE. Endogenous and exogenous control of gastrointestinal epithelial function: building on the legacy of Bayliss and Starling. J Physiol. 2017;595(2):423–32. doi: 10.1113/jp272227 |
| [62] |
Barrett K.E. Endogenous and exogenous control of gastrointestinal epithelial function: building on the legacy of Bayliss and Starling // J. Physiol. 2017. Vol. 595, No. 2. P. 423–432. doi: 10.1113/jp272227 |
| [63] |
Zhu S, Ran J, Yang B, et al. Aquaporins in Digestive System. Adv Exp Med Biol. 2017;969:123–30. doi: 10.1007/978-94-024-1057-0_8 |
| [64] |
Zhu S., Ran J., Yang B., et al. Aquaporins in Digestive System // Adv. Exp. Med. Biol. 2017. Vol. 969. P. 123–130. doi: 10.1007/978-94-024-1057-0_8 |
Eco-Vector
/
| 〈 |
|
〉 |