Peculiarities of Frequency-Following Response in Healthy Individuals when Listening to Complex Sounds

Lyubov' B. Oknina , Andrey A. Slezkin , Yana O. Vologdina , Anna O. Kantserova , Ekaterina V. Strel'nikova , David I. Pitskhelauri

I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (2) : 253 -262.

PDF (1630KB)
I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (2) :253 -262. DOI: 10.17816/PAVLOVJ320947
Original study
research-article

Peculiarities of Frequency-Following Response in Healthy Individuals when Listening to Complex Sounds

Author information +
History +
PDF (1630KB)

Abstract

INTRODUCTION: Studies of recent years showed that functional disorders in the brainstem may be one of factors causing inability to perceive speech by normal-hearing individuals. Frequency-following response (FFR) is an auditory evoked potential emerging in different regions of the brain in response to a sound or a change in the sound frequency. The initiation of this potential is associated with the correct processing of auditory information in the subcortical structures of the brain. However, until the moment, there is no regulatory framework that could permit use of this potential in routine examinations.

AIM: To identify and analyze the peculiarities of FFR in healthy adult individuals when listening to a complex sound.

MATERIALS AND METHODS: The study included 29 healthy subjects aged from 18 to 48 years (mean age 28 ± 10 years). Electrical activity of the brain was recorded from 32 electrodes. Sampling frequency 2000 Hz, transmission frequency 0.1 Hz–500 Hz. The stimulus was a 30-s sound that included simple sounds of five different frequencies (600 Hz, 800 Hz, 1000 Hz, 2000 Hz, 4000 Hz) changing in a random order every 100 ms. FFR was isolated in each frequency change in the complex sound. The resulting FFR included two peaks, for each amplitude, latency, and dipole sources were calculated.

RESULTS: FFR was obtained in all the subjects and included two peaks. In some subjects, FFR peaks had a statistically higher amplitude and lower latency. In subjects with a higher amplitude FFR peaks, three dipoles were identified for the first peak: in the brainstem and in the cortex of the right hemisphere (Brodmann areas 6 and 39). For the second peak, one dipole was identified in the cortex (Brodmann area 19). In subjects with low amplitude FFR peaks, for the first peak one source in the brainstem was identified. For the second peak, two dipoles were identified: in the posterior cingulate cortex (Brodmann area 23) and in the medial thalamus.

CONCLUSION: The data obtained suggest that the method of recording and analyzing FFR can be used to assess the functional integrity and correct participation of the midbrain in the perception of auditory stimuli. The peculiarities of amplitude-time parameters of its peaks probably reflect the individual ability to finely differentiate stimuli.

Keywords

evoked potentials / frequency-following response / FFR / auditory perception / midbrain / speech perception / disorders in auditory perception

Cite this article

Download citation ▾
Lyubov' B. Oknina, Andrey A. Slezkin, Yana O. Vologdina, Anna O. Kantserova, Ekaterina V. Strel'nikova, David I. Pitskhelauri. Peculiarities of Frequency-Following Response in Healthy Individuals when Listening to Complex Sounds. I.P. Pavlov Russian Medical Biological Herald, 2024, 32(2): 253-262 DOI:10.17816/PAVLOVJ320947

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pickles JO. Auditory pathways: anatomy and physiology. Handb Clin Neurol. 2015;129:3–25. doi: 10.1016/b978-0-444-62630-1.00001-9

[2]

Pickles J.O. Auditory pathways: anatomy and physiology // Handb. Clin. Neurol. 2015. Vol. 129. P. 3–25. doi: 10.1016/b978-0-444-62630-1.00001-9

[3]

Chen J, Liang C, Wei Z, et al. Atypical longitudinal development of speech-evoked auditory brainstem response in preschool children with autism spectrum disorders. Autism Res. 2019;12(7):1022–31. doi: 10.1002/aur.2110

[4]

Chen J., Liang C., Wei Z., et al. Atypical longitudinal development of speech-evoked auditory brainstem response in preschool children with autism spectrum disorders // Autism Res. 2019. Vol. 12, No. 7. P. 1022–1031. doi: 10.1002/aur.2110

[5]

Bavykinа IA. Peculiarities of physical development and of level of nutrients in children with autistic spectrum disorders. I. P. Pavlov Russian Medical Biological Herald. 2019;27(2):181–7. (In Russ). doi: 10.23888/PAVLOVJ2019272181-187

[6]

Бавыкина И.А. Особенности физического развития и уровня нутриентов у детей с расстройствами аутистического спектра // Российский медико-биологический вестник имени академика И. П. Павлова. 2019. Т. 27, № 2. C. 181–187. doi: 10.23888/PAVLOVJ2019272181-187

[7]

De Oliveira Eichner AC, Donadon C, Skarżyński PH, et al. A Systematic Review of the Literature Between 2009 and 2019 to Identify and Evaluate Publications on the Effects of Age-Related Hearing Loss on Speech Processing. Med Sci Monit. 2022;28:e938089. doi: 10.12659/msm.938089

[8]

De Oliveira Eichner A.C., Donadon C., Skarżyński P.H., et al. A Systematic Review of the Literature Between 2009 and 2019 to Identify and Evaluate Publications on the Effects of Age-Related Hearing Loss on Speech Processing // Med. Sci. Monit. 2022. Vol. 28. P. e938089. doi: 10.12659/msm.938089

[9]

Clinard CG, Tremblay KL. Aging degrades the neural encoding of simple and complex sounds in the human brainstem. J Am Acad Audiol. 2013;24(7):590–9. doi: 10.3766/jaaa.24.7.7

[10]

Clinard C.G., Tremblay K.L. Aging degrades the neural encoding of simple and complex sounds in the human brainstem // J. Am. Acad. Audiol. 2013. Vol. 24, No. 7. P. 590–599. doi: 10.3766/jaaa.24.7.7

[11]

Bidelman GM. Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. NeuroImage. 2018; 175:56–69. doi: 10.1016/j.neuroimage.2018.03.060

[12]

Bidelman G.M. Subcortical sources dominate the neuroelectric auditory frequency-following response to speech // NeuroImage. 2018. Vol. 175. P. 56–69. doi: 10.1016/j.neuroimage.2018.03.060

[13]

Kulasingham JP, Brodbeck C, Presacco A, et al. High gamma cortical processing of continuous speech in younger and older listeners. NeuroImage. 2020;222:117291. doi: 10.1016/j.neuroimage.2020.117291

[14]

Kulasingham J.P., Brodbeck C., Presacco A., et al. High gamma cortical processing of continuous speech in younger and older listeners // NeuroImage. 2020. Vol. 222. P. 117291. doi: 10.1016/j.neuroimage.2020.117291

[15]

Coffey EBJ, Nicol T, White–Schwoch T, et al. Evolving perspectives on the sources of the frequency-following response. Nat Commun. 2019;10(1):5036. doi: 10.1038/s41467-019-13003-w

[16]

Coffey E.B.J., Nicol T., White–Schwoch T., et al. Evolving perspectives on the sources of the frequency-following response // Nat. Commun. 2019. Vol. 10, No. 1. P. 5036. doi: 10.1038/s41467-019-13003-w

[17]

Gorina–Careta N, Ribas–Prats T, Arenillas–Alcón S, et al. Neonatal Frequency-Following Responses: A Methodological Framework for Clinical Applications. Semin Hear. 2022;43(3):162–76. doi: 10.1055/s-0042-1756162

[18]

Gorina–Careta N., Ribas–Prats T., Arenillas–Alcón S., et al. Neonatal Frequency-Following Responses: A Methodological Framework for Clinical Applications // Semin. Hear. 2022. Vol. 43, No. 3. P. 162–176. doi: 10.1055/s-0042-1756162

[19]

Ferreira L, Skarzynski PH, Skarzynska MB, et al. Effect of Auditory Maturation on the Encoding of a Speech Syllable in the First Days of Life. Brain Sci. 2021;11(7):844. doi: 10.3390/brainsci11070844

[20]

Ferreira L., Skarzynski P.H., Skarzynska M.B., et al. Effect of Auditory Maturation on the Encoding of a Speech Syllable in the First Days of Life // Brain Sci. 2021. Vol. 11, No. 7. P. 844. doi: 10.3390/brainsci11070844

[21]

Johnson KL, Nicol T, Zecker SG, et al. Brainstem encoding of voiced consonant — vowel stop syllables. Clin Neurophysiol. 2008;119(11):2623–35. doi: 10.1016/j.clinph.2008.07.277

[22]

Johnson K.L., Nicol T., Zecker S.G., et al. Brainstem encoding of voiced consonant — vowel stop syllables // Clin. Neurophysiol. 2008. Vol. 119, No. 11. P. 2623–2635. doi: 10.1016/j.clinph.2008.07.277

[23]

Rocha–Muniz CN, Schochat E. Investigation of the neural discrimination of acoustic characteristics of speech sounds in normal-hearing individuals through Frequency-following Response (FFR). Codas. 2021;33(1):e20180324. doi: 10.1590/2317-1782/20202018324

[24]

Rocha–Muniz C.N., Schochat E. Investigation of the neural discrimination of acoustic characteristics of speech sounds in normal-hearing individuals through Frequency-following Response (FFR) // Codas. 2021. Vol. 33, No. 1. P. e20180324. doi: 10.1590/2317-1782/20202018324

[25]

Kırbac A, Turkyılmaz MD, Yağcıoglu S. Gender Effects on Binaural Speech Auditory Brainstem Response. J Int Adv Otol. 2022;18(2):125–30. doi: 10.5152/iao.2022.20012

[26]

Kırbac A., Turkyılmaz M.D., Yağcıoglu S. Gender Effects on Binaural Speech Auditory Brainstem Response // J. Int. Adv. Otol. 2022. Vol. 18, No. 2. P. 125–130. doi: 10.5152/iao.2022.20012

[27]

Krizman J, Bonacina S, Colegrove D, et al. Athleticism and sex impact neural processing of sound. Sci Rep. 2022;12(1):15181. doi: 10.1038/s41598-022-19216-2

[28]

Krizman J., Bonacina S., Colegrove D., et al. Athleticism and sex impact neural processing of sound // Sci. Rep. 2022. Vol. 12, No. 1. P. 15181. doi: 10.1038/s41598-022-19216-2

[29]

Tadel F, Baillet S, Mosher JC, et al. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:879716. doi: 10.1155/2011/879716

[30]

Tadel F., Baillet S., Mosher J.C., et al. Brainstorm: a user-friendly application for MEG/EEG analysis // Comput. Intell. Neurosci. 2011. Vol. 2011. P. 879716. doi: 10.1155/2011/879716

[31]

Korotayeva NV, Ippolitova LI, Ivantsova EN, et al. Brain Derived Neurotrophic Factor as Potential Biomarker of Neurologic Disorders in Premature Children. Nauka Molodykh (Eruditio Juvenium). 2023;11(4):607–14. (In Russ). doi: 10.23888/HMJ2023114607-614

[32]

Коротаева Н.В., Ипполитова Л.И., Иванцова Е.Н., и др. Нейротрофический фактор головного мозга как потенциальный биомаркер неврологических нарушений у недоношенных детей // Наука молодых (Eruditio Juvenium). 2023. Т. 11, № 4. С. 607–614. doi: 10.23888/HMJ2023114607-614

[33]

Skoe E, Chandrasekaran B. The layering of auditory experiences in driving experience-dependent subcortical plasticity. Hear Res. 2014;311:36–48. doi: 10.1016/j.heares.2014.01.002

[34]

Skoe E., Chandrasekaran B. The layering of auditory experiences in driving experience-dependent subcortical plasticity // Hear. Res. 2014. Vol. 311. P. 36–48. doi: 10.1016/j.heares.2014.01.002

[35]

Bubb EJ, Metzler–Baddeley C, Aggleton JP. The cingulum bundle: Anatomy, function, and dysfunction. Neurosci Biobehav Rev. 2018;92:104–27. doi: 10.1016/j.neubiorev.2018.05.008

[36]

Bubb E.J., Metzler–Baddeley C., Aggleton J.P. The cingulum bundle: Anatomy, function, and dysfunction // Neurosci. Biobehav. Rev. 2018. Vol. 92. P. 104–127. doi: 10.1016/j.neubiorev.2018.05.008

[37]

Tanaka S, Honda M, Sadato N. Modality-specific cognitive function of medial and lateral human Brodmann area 6. J Neurosci. 2005;25(2):496–501. doi: 10.1523/jneurosci.4324-04.2005

[38]

Tanaka S., Honda M., Sadato N. Modality-specific cognitive function of medial and lateral human Brodmann area 6 // J. Neurosci. 2005. Vol. 25, No. 2. P. 496–501. doi: 10.1523/jneurosci.4324-04.2005

[39]

Ardila A, Bernal B, Rosselli M. Language and visual perception associations: Meta-analytic connectivity modeling of Brodmann area 37. Behav Neurol. 2015;2015:565871. doi: 10.1155/2015/565871

[40]

Ardila A., Bernal B., Rosselli M. Language and visual perception associations: Meta-analytic connectivity modeling of Brodmann area 37 // Behav. Neurol. 2015. Vol. 2015. P. 565871. doi: 10.1155/2015/565871

RIGHTS & PERMISSIONS

Eco-Vector

PDF (1630KB)

299

Accesses

0

Citation

Detail

Sections
Recommended

/