Analysis of Influence of Cigarette Smoke on Signaling Pathways of Innate Immune System in Monocytes of Peripheral Blood
Stanislav N. Kotlyarov , Igor′ A. Suchkov , Oleg M. Uryas'yev , Elena N. Yakusheva , Aleksey V. Shchulkin , Anna A. Kotlyarova
I.P. Pavlov Russian Medical Biological Herald ›› 2023, Vol. 31 ›› Issue (3) : 391 -404.
Analysis of Influence of Cigarette Smoke on Signaling Pathways of Innate Immune System in Monocytes of Peripheral Blood
INTRODUCTION: Tobacco smoking is an important medical problem since it has a significant impact on the development and progression of chronic obstructive pulmonary disease (COPD). The components of tobacco smoke can initiate and support local and systemic inflammation with participation of monocytes and macrophages.
AIM: To study molecular mechanisms associated with the impact of cigarette smoke on signaling pathways of the innate immune system in monocytes of peripheral blood.
MATERIALS AND METHODS: The methods of in silico analysis was used to identify genes associated with the impact of tobacco smoke. On the basis of the data obtained, a cellular model of inflammation was created in vitro using tobacco smoke extract and monocytes of peripheral blood isolated by immunomagnetic separation. An enzyme-linked immunoassay (ELISA) kit was used to measure the concentration of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in cell supernatants, and of Toll-like receptor 4 (TLR4), ATP-binding cassette A1 (ABCA1) in homogenates of cell membranes of native monocytes and monocytes exposed to 4% tobacco smoke extract. These data were compared with the levels of TNF-α, IL-1β, TLR4 and ABCA1 in monocytes of peripheral blood of patients with COPD with frequent exacerbation phenotype and with obliterating atherosclerosis of lower limb arteries (OALLA). For statistical processing and visualization of the data, MedCalc 20.1.4 and R (version 4.2.2) software was used.
RESULTS: Tobacco smoke influences TLR4, TNF-α signaling pathways and lipid metabolism. Cigarette smoke extract enhanced the expression of proinflammatory cytokines TNF-α and IL-1β in cell supernatants, increased the level of TLR4 and decreased that of ABCA1 in plasmolemma of monocytes of peripheral blood. In patients with COPD with frequent exacerbation phenotype and with OALLA, there were shown increase in the levels of proinflammatory TNF-α and IL-1β cytokines in cell supernatants, increase in the level of TLR4 and reduction of the level of ABCA1 in plasmolemma of monocytes of peripheral blood compared to native monocytes of healthy individuals.
CONCLUSION: Cigarette smoke enhances the production of proinflammatory TNF-α and IL-1β cytokines, increases the levels of TLR4 protein and reduces the amount of ABCA1 transporter in membranes of monocytes of peripheral blood. This may partially explain the cause of the influence of cigarette smoke on development of the pulmonary and cardiovascular diseases. COPD with frequent exacerbation phenotype and OALLA are characterized by enhancement of inflammation with participation of monocytes.
smoking / chronic obstructive pulmonary disease / inflammation / monocytes / innate immune system
| [1] |
Brassington K, Selemidis S, Bozinovski S, et al. Chronic obstructive pulmonary disease and atherosclerosis: common mechanisms and novel therapeutics. Clin Sci (Lond). 2022;136(6):405–23. doi: 10.1042/CS20210835 |
| [2] |
Brassington K., Selemidis S., Bozinovski S., et al. Chronic obstructive pulmonary disease and atherosclerosis: common mechanisms and novel therapeutics // Clin. Sci. (Lond.). 2022. Vol. 136, No. 6. P. 405–423. doi: 10.1042/CS20210835 |
| [3] |
Yang DC, Chen C–H. Cigarette Smoking–Mediated Macrophage Reprogramming: Mechanistic Insights and Therapeutic Implications. J Nat Sci. 2018;4(11):e539. |
| [4] |
Yang D.C., Chen C.–H. Cigarette Smoking–Mediated Macrophage Reprogramming: Mechanistic Insights and Therapeutic Implications // J. Nat. Sci. 2018. Vol. 4, No. 11. P. e539. |
| [5] |
Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–73. doi: 10.4049/jimmunol.164.12.6166 |
| [6] |
Mills C.D., Kincaid K., Alt J.M., et al. M-1/M-2 macrophages and the Th1/Th2 paradigm // J. Immunol. 2000. Vol. 164, No. 12. P. 6166–6173. doi: 10.4049/jimmunol.164.12.6166 |
| [7] |
Karimi K, Sarir H, Mortaz E, et al. Toll-like receptor-4 mediates cigarette smoke-induced cytokine production by human macrophages. Respir Res. 2006;7(1):66. doi: 10.1186/1465-9921-7-66 |
| [8] |
Karimi K., Sarir H., Mortaz E., et al. Toll-like receptor-4 mediates cigarette smoke-induced cytokine production by human macrophages // Respir. Res. 2006. Vol. 7, No. 1. P. 66. doi: 10.1186/1465-9921-7-66 |
| [9] |
Churg A, Zhou S, Wang X, et al. The role of interleukin-1beta in murine cigarette smoke-induced emphysema and small airway remodeling. Am J Respir Cell Mol Biol. 2009;40(4):482–90. doi: 10.1165/rcmb.2008-0038OC |
| [10] |
Churg A., Zhou S., Wang X., et al. The role of interleukin-1beta in murine cigarette smoke-induced emphysema and small airway remodelling // Am. J. Respir. Cell Mol. Biol. 2009. Vol. 40, No. 4. P. 482–490. doi: 10.1165/rcmb.2008-0038OC |
| [11] |
Petrescu F, Voican SC, Silosi I. Tumor necrosis factor-α serum levels in healthy smokers and nonsmokers. Int J Chron Obstruct Pulmon Dis. 2010;5:217–22. doi: 10.2147/copd.s8330 |
| [12] |
Petrescu F., Voican S.C., Silosi I. Tumor necrosis factor-alpha serum levels in healthy smokers and non-smokers // Int. J. Chron. Obstruct. Pulmon. Dis. 2010. Vol. 5. P. 217–222. doi: 10.2147/copd.s8330 |
| [13] |
Hannan SE, Harris JO, Sheridan NP, et al. Cigarette smoke alters plasma membrane fluidity of rat alveolar macrophages. Am Rev Respir Dis. 1989;140(6):1668–73. doi: 10.1164/ajrccm/140.6.1668 |
| [14] |
Hannan S.E., Harris J.O., Sheridan N.P., et al. Cigarette smoke alters plasma membrane fluidity of rat alveolar macrophages // Am. Rev. Respir. Dis. 1989. Vol. 140, No. 6. P. 1668–1673. doi: 10.1164/ajrccm/140.6.1668 |
| [15] |
Sonett J, Goldklang M, Sklepkiewicz P, et al. A critical role for ABC transporters in persistent lung inflammation in the development of emphysema after smoke exposure. FASEB J. 2018; 32(12):fj201701381. doi: 10.1096/fj.201701381 |
| [16] |
Sonett J., Goldklang M., Sklepkiewicz P., et al. A critical role for ABC transporters in persistent lung inflammation in the development of emphysema after smoke exposure // FASEB J. 2018. Vol. 32, No. 12. P. fj201701381. doi: 10.1096/fj.201701381 |
| [17] |
Song W, Wang W, Dou L–Y, et al. The implication of cigarette smoking and cessation on macrophage cholesterol efflux in coronary artery disease patients. J Lipid Res. 2015;56(3):682–91. doi: 10.1194/jlr.P055491 |
| [18] |
Song W., Wang W., Dou L.–Y., et al. The implication of cigarette smoking and cessation on macrophage cholesterol efflux in coronary artery disease patients // J. Lipid Res. 2015. Vol. 56, No. 3. P. 682–691. doi: 10.1194/jlr.P055491 |
| [19] |
Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts. 2022;13(1):34–54. doi: 10.1515/bmc-2022-0001 |
| [20] |
Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease // Biomol. Concepts. 2022. Vol. 13, No. 1. P. 34–54. doi: 10.1515/bmc-2022-0001 |
| [21] |
Stämpfli MR, Anderson GP. How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol. 2009;9(5):377–84. doi: 10.1038/nri2530 |
| [22] |
Stämpfli M.R., Anderson G.P. How cigarette smoke skews immune responses to promote infection, lung disease and cancer // Nat. Rev. Immunol. 2009. Vol. 9, No. 5. P. 377–384. doi: 10.1038/nri2530 |
| [23] |
Lugg ST, Scott A, Parekh D, et al. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax. 2022;77(1):94–101. doi: 10.1136/thoraxjnl-2020-216296 |
| [24] |
Lugg S.T., Scott A., Parekh D., et al. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease // Thorax. 2022. Vol. 77, No. 1. P. 94–101. doi: 10.1136/thoraxjnl-2020-216296 |
| [25] |
Shustova SA, Miroshkina TA. Protective mechanisms of lungs. I. P. Pavlov Russian Medical Biological Herald. 2020;28(4):567–77. (In Russ). doi: 10.23888/PAVLOVJ2020284567-577 |
| [26] |
Шустова С.А., Мирошкина Т.А. Защитные механизмы легких // Российский медико-биологический вестник имени академика И. П. Павлова. 2020. Т. 28, № 4. С. 567–577. doi: 10.23888/PAVLOVJ 2020284567-577 |
| [27] |
Flynn MC, Pernes G, Lee MKS, et al. Monocytes, Macrophages, and Metabolic Disease in Atherosclerosis. Front Pharmacol. 2019;10:666. doi: 10.3389/fphar.2019.00666 |
| [28] |
Flynn M.C., Pernes G., Lee M.K.S., et al. Monocytes, Macrophages, and Metabolic Disease in Atherosclerosis // Front. Pharmacol. 2019. Vol. 10. P. 666. doi: 10.3389/fphar.2019.00666 |
| [29] |
Yeh HY, Hung SH, Chen SC, et al. The Expression of Toll-Like Receptor 4 mRNA in PBMCs Is Upregulated in Smokers and Decreases Upon Smoking Cessation. Front Immunol. 2021;12:667460. doi: 10.3389/fimmu.2021.667460 |
| [30] |
Yeh H.Y., Hung S.H., Chen S.C., et al. The Expression of Toll-Like Receptor 4 mRNA in PBMCs Is Upregulated in Smokers and Decreases Upon Smoking Cessation // Front. Immunol. 2021. Vol. 12. P. 667460. doi: 10.3389/fimmu.2021.667460 |
| [31] |
Demirjian L, Abboud RT, Li H, et al. Acute effect of cigarette smoke on TNF-α release by macrophages mediated through the erk1/2 pathway. Biochim Biophys Acta. 2006;1762(6):592–7. doi: 10.1016/j.bbadis.2006.04.004 |
| [32] |
Demirjian L., Abboud R.T., Li H., et al. Acute effect of cigarette smoke on TNF-alpha release by macrophages mediated through the erk1/2 pathway // Biochim. Biophys. Acta. 2006. Vol. 1762, No. 6. P. 592–597. doi: 10.1016/j.bbadis.2006.04.004 |
| [33] |
Budnevsky AV, Ovsyannikov ES, Maltseva YuN, et al. Peculiarities of course of chronic obstructive pulmonary disease with underlying metabolic syndrome. Nauka Molodykh (Eruditio Juvenium). 2020; 8(2):164–71. (In Russ). doi: 10.23888/HMJ202082164-171 |
| [34] |
Будневский А.В., Овсянников Е.С., Мальцева Ю.Н., и др. Особенности течения хронической обструктивной болезни легких на фоне метаболического синдрома // Наука молодых (Eruditio Juvenium). 2020. Т. 8, № 2. С. 164–171. doi: 10.23888/HMJ202082164-171 |
| [35] |
Yao Y, Zhou J, Diao X, et al. Association between tumor necrosis factor-α and chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ther Adv Respir Dis. 2019; 13:1753466619866096. doi: 10.1177/1753466619866096 |
| [36] |
Yao Y., Zhou J., Diao X., et al. Association between tumor necrosis factor-α and chronic obstructive pulmonary disease: a systematic review and meta-analysis // Ther. Adv. Respir. Dis. 2019. Vol. 13. P. 1753466619866096. doi: 10.1177/1753466619866096 |
| [37] |
Ma K, Huang F, Qiao R, et al. Pathogenesis of sarcopenia in chronic obstructive pulmonary disease. Front Physiol. 2022;13:850964. doi: 10.3389/fphys.2022.850964 |
| [38] |
Ma K., Huang F., Qiao R., et al. Pathogenesis of sarcopenia in chronic obstructive pulmonary disease // Front Physiol. 2022. Vol. 13. P. 850964. doi: 10.3389/fphys.2022.850964 |
| [39] |
Zou Y, Chen X, Liu J, et al. Serum IL-1β and IL-17 levels in patients with COPD: associations with clinical parameters. Int J Chron Obstruct Pulmon Dis. 2017;12:1247–54. doi: 10.2147/COPD.S131877 |
| [40] |
Zou Y., Chen X., Liu J., et al. Serum IL-1β and IL-17 levels in patients with COPD: associations with clinical parameters // Int. J. Chron. Obstruct. Pulmon. Dis. 2017. Vol. 12. P. 1247–1254. doi: 10.2147/COPD.S131877 |
| [41] |
Osei ET, Brandsma C–A, Timens W, et al. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur Respir J. 2020;55(2):1900563. doi: 10.1183/13993003.00563-2019 |
| [42] |
Osei E.T., Brandsma C.–A., Timens W., et al. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD // Eur. Respir. J. 2020. Vol. 55, No. 2. P. 1900563. doi: 10.1183/13993003.00563-2019 |
| [43] |
Colarusso C, Terlizzi M, Molino A, et al. Role of the inflammasome in chronic obstructive pulmonary disease (COPD). Oncotarget. 2017;8(47):81813–24. doi: 10.18632/oncotarget.17850 |
| [44] |
Colarusso C., Terlizzi M., Molino A., et al. Role of the inflammasome in chronic obstructive pulmonary disease (COPD) // Oncotarget. 2017. Vol. 8, No. 47. P. 81813–81824. doi: 10.18632/oncotarget.17850 |
| [45] |
Demina EP, Miroshnikova VV, Schwarzman AL. Role of the ABC transporters A1 and G1, key reverse cholesterol transport proteins, in atherosclerosis. Mol Biol (Mosk). 2016;50(2):223–30. (In Russ). doi: 10.7868/S002689841602004X |
| [46] |
Демина Е.П., Мирошникова В.В., Шварцман А.Л. Роль АВС-транспортеров A1 И G1 — ключевых белков обратного транспорта холестерина — в развитии атеросклероза // Молекулярная биология. 2016. Т. 50, № 2. С. 223–230. doi: 10.7868/S002689841602004X |
Eco-Vector
/
| 〈 |
|
〉 |