THE ROLE OF OXIDATIVE STRESS IN THE PATHOGENESIS OF THE BACTERIAL CORNEAL ULCER

I.P. Pavlov Russian Medical Biological Herald ›› 2013, Vol. 21 ›› Issue (3) : 148 -152.

PDF
I.P. Pavlov Russian Medical Biological Herald ›› 2013, Vol. 21 ›› Issue (3) :148 -152. DOI: 10.17816/PAVLOVJ20133148-152
Articles
review-article

THE ROLE OF OXIDATIVE STRESS IN THE PATHOGENESIS OF THE BACTERIAL CORNEAL ULCER

Author information +
History +
PDF

Abstract

In the article the current ideas of a role of free radical processes in physiology of a cornea and microorganisms are surveyed. The role of an oxidative stress in the pathogenesis of the bacterial corneal ulcer is discussed. The review of researches on the application of antioxidants for treatment of a bacterial ulcer is done.

Keywords

oxidative stress / antioxidants / bacterial corneal ulcer

Cite this article

Download citation ▾
null. THE ROLE OF OXIDATIVE STRESS IN THE PATHOGENESIS OF THE BACTERIAL CORNEAL ULCER. I.P. Pavlov Russian Medical Biological Herald, 2013, 21(3): 148-152 DOI:10.17816/PAVLOVJ20133148-152

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Брудастов Ю.А. Активность каталазы и супероксиддисмутазы staphylococcus aureus при их персистировании в макроорганизме / Ю.А. Брудастов, Т.С. Сборец, Д.Г. Дерябин // Журн. микробиологии. – 2001. – № 2. – С. 13-16.

[2]

Курбанов А.И. Антиоксидантные ферменты микроорганизмов как потенциальные факторы патогенности / А.И. Курбанов // Междунар. мед. журн. – 2009. – №1. – С. 136-139.

[3]

Курбанов А.И. Роль каталазы и супероксиддисмутазы микроорганизмов при их фагоцитозе макрофагальными клетками / А.И. Курбанов, З.О. Караев // Биомед. – 2005. – № 3. – С. 44-45.

[4]

Ланкин В.З. Свободнорадикальные процессы в норме и при заболеваниях сердечно-сосудистой системы / В.З. Ланкин, А.К. Тихазе, Ю.Н. Беленков. – М.: РКНПК МЗ РФ, 2001. – 78 с.

[5]

Рябиченко Е.В. Роль активных форм кислорода, генерируемых фагоцитами, в патогенезе заболеваний / Е.В. Рябиченко, В.М. Бондаренко, В.В. Рябиченко // Журн. микробиологии. – 2000. – № 4. – С. 65-71.

[6]

Amanso A.M. Differential roles of NADPH oxidases in vascular physiology and pathophysiology / A.M. Amanso, K.K. Griendling // Front. Biosc. – 2012. – Vol. 1, №4. – P. 1044-1064.

[7]

Antioxidant therapy in the treatment of experimental acute corneal inflammation / J.L. Alio [et al.] // Ophthalmic. Res. – 1995. – Vol. 27, № 3. – P. 136-143.

[8]

Cabrera M.P. Antioxidants and the Integrity of Ocular Tissues / M.P. Cabrera, R.H. Chihuailaf / Veter. Med. Inter. – 2011. – URL: http://ukpmc.ac.uk/ articles/ PMC3140028/.

[9]

Carubelli R. Role of active oxygen species in corneal ulceration. Effect of hydrogen peroxide generated in situ / R. Carubelli, R.E. Nordquist, J.J. Rowsey // Cornea. – 1990. – Vol. 9, № 2. – P. 161-169.

[10]

Detection of aldehyde dehydrogenase activity in human corneal extracts / T.D. Gondhowiardjo [et al.] // Curr. Eye. Res. – 1991. – Vol. 10. – P. 1001-1007.

[11]

Effect of topical antioxidant therapy on experimental infectious keratitis / J.L. Alio [et al.] // Cornea. – 1995. – Vol. 14, № 2. – P. 175-179.

[12]

Effects of topical vitamin E on corneal superoxide dismutase, glutathione peroxidase activities and polymorphonuclear leucocyte infiltration after photorefractive keratectomy / A. Bilgihan [et al.] // Act. Ophthalmol. Scand. – 2003. – Vol. 81, № 2. – P. 177-180.

[13]

Effect of UVB radiation on corneal aldehyde dehydrogenase / L. Uma [et al.] // Curr. Eye Res. – 1996. – Vol. 15, № 6. – P. 685-690.

[14]

Inhibition of Corneal Inflammation by an Acylated Superoxide Dismutase Derivative / E. Ando [et al.] // Inves. Ophthal. Visual. Sc. – 1990. – Vol. 31, № 10. – P. 1963-1967.

[15]

Lecithin-bound superoxide dismutase in the prevention of neutrophil-induced damage of corneal tissue / K. Matsumoto [et al.] // Invest. Ophthalmol. Vis. Sci. – 1998. – Vol. 39, № 1. – P. 30-35.

[16]

Ma J. Mechanisms of corneal ulceration / J. Ma, C. Dohlman // Ophthalmol. Clin. North. Am. – 2002. – Vol.15, №1. – P. 27-33.

[17]

Mukhopadhyay C.K. Free metal ion-independent oxidative damage of collagen. Protection by ascorbic acid / C.K. Mukhopadhyay, I.B. Chatterjee // J. Biol. Chem. – 1994. – Vol. 269, № 48. – P. 30200-30205.

[18]

Pappa A. Corneal and stomach expression of aldehyde dehydrogenases: from fish to mammals / A. Pappa, N.A. Sophos, V. Vasiliou // Chem. Biol. Interact. – 2001. – Vol. 130-132. – P. 181-191.

[19]

Pascolini D. Global estimates of visual impairment: 2010 / D. Pascolini, S.P. Mariotti // Br. J. Ophthal. – 2012. – Vol. 96, № 5. – P. 614-618.

[20]

Qian Y. The role of oxygen free radical in experimental keratitis / Y. Qian, J. Wu // Zhonghua. Yan. Ke. Za. Zhi. – 1998. – Vol. 34, № 2. – P. 149-151.

[21]

Ringvold A. Distribution of ascorbate in the anterior bovine eye / A. Ringvold, E. Anderssen, I. Kjonniksen // Invest. Ophthal. Vis. Sc. – 2000. – Vol. 41, № 1. – P. 20-23.

[22]

Superoxide dismutase isoenzymes in the normal and diseased human cornea / A. Behndig [et al.] // Invest. Ophthalmol. Vis. Sci. – 2001. – Vol. 42, № 10. – P. 2293-2296.

[23]

The physiological role of reactive oxygen species (ROS) in lens and corneal epithelial cells / M. Lou [et al.] // Act. Ophthalm. – 2011. – Vol. 89, Is. 248.

[24]

The role of corneal crystallins in the cellular defense mechanisms against oxidative stress / N. Lassen [et al.] // Semin. Cell Evelop. Biol. – 2008. – Vol. 19, Is. 2. – P. 100-112.

[25]

UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage / S. Čejková [et al.] // Physiol. Res. – 2004. – Vol. 53, № 1. – P. 1-10.

RIGHTS & PERMISSIONS

Shchulkin A.V., Kolesnikov A.V., Barenina O.I., Nikolaev M.N., Nikiforov A.A.

PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

/