Pathogenetic Aspects of Bronchial Asthma Phenotyping

Yuriy Yu. Byalovskiy , Sergey I. Glotov , Irina S. Rakitina , Anna N. Ermachkova

I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (1) : 145 -158.

PDF (2173KB)
I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (1) : 145 -158. DOI: 10.17816/PAVLOVJ181606
Reviews
review-article

Pathogenetic Aspects of Bronchial Asthma Phenotyping

Author information +
History +
PDF (2173KB)

Abstract

INTRODUCTION: During a many-year history of its study, bronchial asthma (BA) has gone through the stages of numerous classifications. The introduction of specific biological therapy of BA permitted to speak about the phenotypes of the disease.

AIM: Presentation of the main pathophysiological mechanisms for isolation of endotypes and phenotypes of BA.

The diagnosis of phenotype of BA is based on the pathophysiological mechanisms of its development, which permit to evaluate the dynamics of the disease, make the diagnosis and predict the course of the disease. The most complicated aspect of BA phenotyping is severe forms of the disease characterized by a combination of different phenotypes. This impedes evaluation of specific pathogenetic mechanisms and administration of the optimal therapy for the patient.

CONCLUSION: The diagnosis of BA phenotypes permits to identify specific pathogenetic mechanisms and thereby personalize the treatment.

Keywords

bronchial asthma / phenotypes / endotypes

Cite this article

Download citation ▾
Yuriy Yu. Byalovskiy, Sergey I. Glotov, Irina S. Rakitina, Anna N. Ermachkova. Pathogenetic Aspects of Bronchial Asthma Phenotyping. I.P. Pavlov Russian Medical Biological Herald, 2024, 32(1): 145-158 DOI:10.17816/PAVLOVJ181606

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Updated 2023 [Internet]. Available at: https://ginasthma.org/wp-content/uploads/2023/05/GINA-2023- Full-Report-2023-WMS.pdf. Accessed: 2023 February 01.

[2]

Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Updated 2023 [Интернет]. Доступно по: https://gina sthma.org/wp-content/uploads/2023/05/GINA-2023-Full-Report-2023-WMS.pdf. Ссылка активна на 01 февраля 2023.

[3]

Chuchalin AG, Avdeev SN, Aisanov ZR, et al. Federal guidelines on diagnosis and treatment of bronchial asthma. Pulmonologiya. 2022;32(3):393–447. (In Russ). doi: 10.18093/0869-0189-2022-32-3-393-447

[4]

Чучалин А.Г., Авдеев С.Н., Айсанов З.Р., и др. Бронхиальная астма. Федеральные клинические рекомендации по диагностике и лечению // Пульмонология. 2022. Т. 32, № 3. С. 393–447. doi: 10.18093/0869-0189-2022-32-3-393-447

[5]

The Global Asthma Report 2022. Int J Tuberc Lung Dis. 2022;26(Suppl 1): 1–104. doi: 10.5588/ijtld.22.1010

[6]

The Global Asthma Report 2022 // Int. J. Tuberc. Lung Dis. 2022. Vol. 26, Suppl. 1. P. 1–104. doi: 10.5588/ijtld.22.1010

[7]

Klinicheskiye rekomendatsii. Bronkhial’naya astma. 2021 [Internet]. Available at: https://cr.minzdrav.gov.ru/recomend/359_2. Accessed: 2023 February 01. (In Russ).

[8]

Клинические рекомендации. Бронхиальная астма. 2021 [Интернет]. Доступно по: https://cr.minzdrav.gov.ru/recomend/359_2. Ссылка активна на 01 февраля 2023.

[9]

Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest. 2019;129(4):1493–503. doi: 10.1172/jci124611

[10]

Agache I., Akdis C.A. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases // J. Clin. Invest. 2019. Vol. 129, No. 4. P. 1493–1503. doi: 10.1172/jci124611

[11]

Chung KF. Precision medicine in asthma: linking phenotypes to targeted treatments. Curr Opin Pulm Med. 2018;24(1):4–10. doi: 10.1097/mcp.0000000000000434

[12]

Chung K.F. Precision medicine in asthma: linking phenotypes to targeted treatments // Curr. Opin. Pulm. Med. 2018. Vol. 24, No. 1. P. 4–10. doi: 10.1097/mcp.0000000000000434

[13]

Wenzel SE, Schwartz LB, Langmack EL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999;160(3):1001–8. doi: 10.1164/ajrccm.160.3.9812110

[14]

Wenzel S.E., Schwartz L.B., Langmack E.L., et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics // Am. J. Respir. Crit. Care Med. 1999. Vol. 160, No. 3. P. 1001–1008. doi: 10.1164/ajrccm.160.3.9812110

[15]

Shaw DE, Sousa AR, Fowler SJ, et al.; U-BIOPRED Study Group. Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. Eur Respir J. 2016;46(5):1308–21. doi: 10.1183/13993003.00779-2015

[16]

Shaw D.E., Sousa A.R., Fowler S.J., et al.; U-BIOPRED Study Group. Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort // Eur. Respir. J. 2016. Vol. 46, No. 5. P. 1308–1321. doi: 10.1183/13993003.00779-2015

[17]

Loza MJ, Djukanovic R, Chung KF, et al. Validated and longitu- dinally stable asthma phenotypes based on cluster analysis of the ADEPT study. Respir Res. 2016;17(1):165. doi: 10.1186/s12931-016-0482-9

[18]

Loza M.J., Djukanovic R., Chung K.F., et al. Validated and longitu- dinally stable asthma phenotypes based on cluster analysis of the ADEPT study // Respir. Res. 2016. Vol. 17, No. 1. P. 165. doi: 10.1186/s12931-016-0482-9

[19]

Chung KF, Dixey P, Abubakar–Waziri H, et al. Characteristics, phenotypes, mechanisms and management of severe asthma. Chin Med J (Engl). 2022;135(10):1141–55. doi: 10.1097/cm9.0000000 000001990

[20]

Chung K.F., Dixey P., Abubakar–Waziri H., et al. Characteristics, phenotypes, mechanisms and management of severe asthma // Chin. Med. J. (Engl). 2022. Vol. 135, No. 10. P. 1141–1155. doi: 10.1097/cm9.0000000000001990

[21]

Guo Z, Wu J, Zhao J, et al. IL-33 promotes airway remodeling and is a marker of asthma disease severity. J Asthma. 2014;51(8):863–9. doi: 10.3109/02770903.2014.921196

[22]

Guo Z., Wu J., Zhao J., et al. IL-33 promotes airway remodeling and is a marker of asthma disease severity // J. Asthma. 2014. Vol. 51, No. 8. P. 863–869. doi: 10.3109/02770903.2014.921196

[23]

Al-Sajee D, Sehmi R, Hawke TJ, et al. The expression of IL-33 and TSLP and their receptors in asthmatic airways following inhaled allergen challenge. Am J Respir Crit Care Med. 2018;198(6):805–7. doi: 10.1164/rccm.201712-2468le

[24]

Al-Sajee D., Sehmi R., Hawke T.J., et al. The expression of IL-33 and TSLP and their receptors in asthmatic airways following inhaled allergen challenge // Am. J. Respir. Crit. Care Med. 2018. Vol. 198, No. 6. P. 805–807. doi: 10.1164/rccm.201712-2468le

[25]

Yang Q, Ge MQ, Kokalari B, et al. Group 2 innate lymphoid cells mediate ozone-induced airway inflammation and hyperrespon- siveness in mice. J Allergy Clin Immunol. 2016;137(2):571–8. doi: 10.1016/j.jaci.2015.06.037

[26]

Yang Q., Ge M.Q., Kokalari B., et al. Group 2 innate lymphoid cells mediate ozone-induced airway inflammation and hyperresponsiveness in mice // J. Allergy Clin. Immunol. 2016. Vol. 137, No. 2. P. 571–578. doi: 10.1016/j.jaci.2015.06.037

[27]

Chen R, Smith SG, Salter B, et al. Allergen-induced Increases in Sputum Levels of Group 2 Innate Lymphoid Cells in Subjects with Asthma. Am J Respir Crit Care Med. 2017;196(6):700–12. doi: 10.1164/rccm.201612-2427oc

[28]

Chen R., Smith S.G., Salter B., et al. Allergen-induced Increases in Sputum Levels of Group 2 Innate Lymphoid Cells in Subjects with Asthma // Am. J. Respir. Crit. Care Med. 2017. Vol. 196, No. 6. P. 700–712. doi: 10.1164/rccm.201612-2427oc

[29]

Hirose K, Iwata A, Tamachi T, et al. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev. 2017;278(1): 145–61. doi: 10.1111/imr.12540

[30]

Hirose K., Iwata A., Tamachi T., et al. Allergic airway inflammation: key players beyond the Th2 cell pathway // Immunol. Rev. 2017. Vol. 278, No. 1. P. 145–161. doi: 10.1111/imr.12540

[31]

Syabbalo N. Biomarkers for Diagnosis and Management of Eosinophilic Asthma. Ann Clin Med Res. 2020;1(1):1003.

[32]

Syabbalo N. Biomarkers for Diagnosis and Management of Eosinophilic Asthma // Ann. Clin. Med. Res. 2020. Vol. 1, No. 1. P. 1003.

[33]

Guo L, Huang Y, Chen X, et al. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16(10):1051–9. doi: 10.1038/ni.3244

[34]

Guo L., Huang Y., Chen X., et al. Innate immunological function of TH2 cells in vivo // Nat. Immunol. 2015. Vol. 16, No. 10. P. 1051–1059. doi: 10.1038/ni.3244

[35]

Persson C. Lysis of primed eosinophils in severe asthma. J Allergy Clin Immunol. 2013;132(6):1459–60. doi: 10.1016/j.jaci.2013.09.036

[36]

Persson C. Lysis of primed eosinophils in severe asthma // J. Allergy Clin. Immunol. 2013. Vol. 132, No. 6. P. 1459–1460. doi: 10.1016/j.jaci.2013.09.036

[37]

Cayrol C, Girard J–P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev. 2018;281(1):154–68. doi: 10.1111/imr.12619

[38]

Cayrol C., Girard J.–P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family // Immunol. Rev. 2018. Vol. 281, No. 1. P. 154–168. doi: 10.1111/imr.12619

[39]

Fanning LB, Boyce JA. Lipid mediators and allergic diseases. Ann Allergy Asthma Immunol. 2013;111(3):155–62. doi: 10.1016/j.anai. 2013.06.031

[40]

Fanning L.B., Boyce J.A. Lipid mediators and allergic diseases // Ann. Allergy Asthma Immunol. 2013. Vol. 111, No. 3. P. 155–162. doi: 10.1016/j.anai.2013.06.031

[41]

Kim BS, Wang K, Siracusa MC, et al. Basophils promote innate lymphoid cell responses in inflamed skin. J Immunol. 2014;193(7): 3717–25. doi: 10.4049/jimmunol.1401307

[42]

Kim B.S., Wang K., Siracusa M.C., et al. Basophils promote innate lymphoid cell responses in inflamed skin // J. Immunol. 2014. Vol. 193, No. 7. P. 3717–3725. doi: 10.4049/jimmunol.1401307

[43]

Samitas K, Delimpoura V, Zervas E, et al. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives. Eur Respir Rev. 2015; 24(138):594–601. doi: 10.1183/16000617.00001715

[44]

Samitas K., Delimpoura V., Zervas E., et al. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives // Eur. Respir. Rev. 2015. Vol. 24, No. 138. P. 594–601. doi: 10.1183/16000617.00001715

[45]

Fajt ML, Gelhaus SL, Freeman B, et al. Prostaglandin D(2) pathway upregulation: relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol. 2013;131(6):1504–12. doi: 10.1016/j.jaci.2013.01.035

[46]

Fajt M.L., Gelhaus S.L., Freeman B., et al. Prostaglandin D2 pathway up regulation: relation to asthma severity, control, and TH2 inflammation // J. Allergy Clin. Immunol. 2013. Vol. 131, No. 6. P. 1504–1512. doi: 10.1016/j.jaci.2013.01.035

[47]

Buchheit KM, Cahill KN, Katz HR, et al. Thymic stromal lympho- poietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016; 137(5):1566–76.e5. doi: 10.1016/j.jaci.2015.10.020

[48]

Buchheit K.M., Cahill K.N., Katz H.R., et al. Thymic stromal lympho-poietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease // J. Allergy Clin. Immunol. 2016. Vol. 137, No. 5. P. 1566–1576.e5. doi: 10.1016/j.jaci.2015.10.020

[49]

Kuruvilla ME, Lee FE–H, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol. 2019;56(2):219–33. doi: 10.1007/s12016-018-8712-1

[50]

Kuruvilla M.E., Lee F.E.–H., Lee G.B. Understanding Asthma Pheno-types, Endotypes, and Mechanisms of Disease // Clin. Rev. Allergy Immunol. 2019. Vol. 56, No. 2. P. 219–233. doi: 10.1007/s12016-018-8712-1

[51]

James B, Milstien S, Spiegel S. ORMDL3 and allergic asthma: From physiology to pathology. J Allergy Clin Immunol. 2019;144(3):634–40. doi: 10.1016/j.jaci.2019.07.023

[52]

James B., Milstien S., Spiegel S. ORMDL3 and allergic asthma: From physiology to pathology // J. Allergy Clin. Immunol. 2019. Vol. 144, No. 3. P. 634–640. doi: 10.1016/j.jaci.2019.07.023

[53]

Pua HH, Ansel KM. MicroRNA regulation of allergic inflammation and asthma. Curr Opin Immunol. 2015;36:101–8. doi: 10.1016/j.coi.2015.07.006

[54]

Pua H.H., Ansel K.M. MicroRNA regulation of allergic inflammation and asthma // Curr. Opin. Immunol. 2015. Vol. 36. P. 101–108. doi: 10.1016/j.coi.2015.07.006

[55]

Yu X, Wang M, Li L, et al. MicroRNAs in atopic dermatitis: A systematic review. J Cell Mol Med. 2020;24(11):5966–72. doi: 10.1111/jcmm.15208

[56]

Yu X., Wang M., Li L., et al. MicroRNAs in atopic dermatitis: A systematic review // J. Cell. Mol. Med. 2020. Vol. 24, No. 11. P. 5966–5972. doi: 10.1111/jcmm.15208

[57]

Lacedonia D, Palladino GP, Foschino–Barbaro MP, et al. Expression profiling of miRNA-145 and miRNA-338 in serum and sputum of patients with COPD, asthma, and asthma-COPD overlap syndrome phenotype. Int J Chron Obstruct Pulmon Dis. 2017;12:1811–7. doi: 10.2147/copd.s130616

[58]

Lacedonia D., Palladino G.P., Foschino–Barbaro M.P., et al. Expression profiling of miRNA-145 and miRNA-338 in serum and sputum of patients with COPD, asthma, and asthma-COPD overlap syndrome phenotype // Int. J. Chron. Obstruct. Pulmon. Dis. 2017. Vol. 12. P. 1811–1817. doi: 10.2147/copd.s130616

[59]

Boudewijn IM, Roffel MP, Vermeulen CJ, et al. A Novel Role for Bronchial MicroRNAs and Long Noncoding RNAs in Asthma Remission. Am J Respir Crit Care Med. 2020;202(4):614–8. doi: 10.1164/rccm.201908-1610le

[60]

Boudewijn I.M., Roffel M.P., Vermeulen C.J., et al. A Novel Role for Bronchial MicroRNAs and Long Noncoding RNAs in Asthma Remission // Am. J. Respir. Crit. Care Med. 2020. Vol. 202, No. 4. P. 614–618. doi: 10.1164/rccm.201908-1610le

[61]

Li X, Ye S, Lu Y. Long non-coding RNA NEAT1 overexpression associates with increased exacerbation risk, severity, and inflammation, as well as decreased lung function through the interaction with microRNA-124 in asthma. J Clin Lab Anal. 2020;34(1):e23023. doi: 10.1002/jcla.23023

[62]

Li X., Ye S., Lu Y. Long non-coding RNA NEAT1 overexpression associates with increased exacerbation risk, severity, and inflammation, as well as decreased lung function through the interaction with microRNA-124 in asthma // J. Clin. Lab. Anal. 2020. Vol. 34, No. 1. P. e23023. doi: 10.1002/jcla.23023

[63]

Ramelli SC, Gerthoffer WT. MicroRNA Targets for Asthma Therapy. Adv Exp Med Biol. 2021;1303:89–105. doi: 10.1007/978-3-030- 63046-1_6

[64]

Ramelli S.C., Gerthoffer W.T. MicroRNA Targets for Asthma Therapy // Adv. Exp. Med. Biol. 2021. Vol. 1303. P. 89–105. doi: 10.1007/978-3-030-63046-1_6

[65]

Li W, Gao P, Zhi Y, et al. Periostin: Its role in asthma and its potential as a diagnostic or therapeutic target. Respir Res. 2015;16(1):57. doi: 10.1186/s12931-015-0218-2

[66]

Li W., Gao P., Zhi Y., et al. Periostin: Its role in asthma and its potential as a diagnostic or therapeutic target // Respir. Res. 2015. Vol. 16, No. 1. P. 57. doi: 10.1186/s12931-015-0218-2

[67]

Bentley JK, Chen Q, Hong JY, et al. Periostin is required for maximal airways inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol. 2014;134(6):1433–42. doi: 10.1016/j.jaci.2014.05.029

[68]

Bentley J.K., Chen Q., Hong J.Y., et al. Periostin is required for maximal airways inflammation and hyperresponsiveness in mice // J. Allergy Clin. Immunol. 2014. Vol. 134, No. 6. P. 1433–1442. doi: 10.1016/j.jaci.2014.05.029

[69]

Schleich FN, Manise M, Sele J, et al. Distribution of sputum cellular phenotype in a large asthma cohort: Predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulm Med. 2013;13:11. doi: 10.1186/1471-2466-13-11

[70]

Schleich F.N., Manise M., Sele J., et al. Distribution of sputum cellular phenotype in a large asthma cohort: Predicting factors for eosinophilic vs neutrophilic inflammation // BMC Pulm. Med. 2013. Vol. 13. P. 11. doi: 10.1186/1471-2466-13-11

[71]

Zaihra T, Walsh CJ, Ahmed S, et al. Phenotyping of difficult asthma using longitudinal physiological and biomarker measurements reveals significant differences in stability between clusters. BMC Pulm Med. 2016;16(1):74. doi: 10.1186/s12890-016-0232-2

[72]

Zaihra T., Walsh C.J., Ahmed S., et al. Phenotyping of difficult asthma using longitudinal physiological and biomarker measurements reveals significant differences in stability between clusters // BMC Pulm. Med. 2016. Vol. 16, No. 1. P. 74. doi: 10.1186/s12890-016-0232-2

[73]

Korevaar DA, Westerhof GA, Wang J, et al. Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: A systematic review and meta-analysis. Lancet Respir Med. 2015;3(4):290–300. doi: 10.1016/s2213-2600(15)00050-8

[74]

Korevaar D.A., Westerhof G.A., Wang J., et al. Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: A systematic review and meta-analysis // Lancet Respir. Med. 2015. Vol. 3, No. 4. P. 290–300. doi: 10.1016/s2213-2600(15)00050-8

[75]

Plaza V, Crespo A, Giner J, et al. Inflammatory Asthma Phenotype Discrimination Using an Electronic Nose Breath Analyzer. J Investig Allergol Clin Immunol. 2015;25(6):431–7.

[76]

Plaza V., Crespo A., Giner J., et al. Inflammatory Asthma Phenotype Discrimination Using an Electronic Nose Breath Analyzer // J. Investig. Allergol. Clin. Immunol. 2015. Vol. 25, No. 6. P. 431–437.

[77]

Van der Sche MP, Palmay R, Cowan JO, et al. Predicting steroid responsiveness in patients with asthma using exhaled breath profiling. Clin Exp Allergy. 2013;43(11):1217–25. doi: 10.1111/cea.12147

[78]

Van der Schee M.P., Palmay R., Cowan J.O., et al. Predicting steroid responsiveness in patients with asthma using exhaled breath profiling // Clin. Exp. Allergy. 2013. Vol. 43, No. 11. P. 1217–1225. doi: 10.1111/cea.12147

[79]

Pavord I, Bahmer T, Braido F, et al. Severe T2-high asthma in the biologics era: European experts’ opinion. Eur Respir Rev. 2019;28(152):190054. doi: 10.1183/16000617.0054-2019

[80]

Pavord I., Bahmer T., Braido F., et al. Severe T2-high asthma in the biologics era: European experts’ opinion // Eur. Respir. Rev. 2019. Vol. 28, No. 152. P. 190054. doi: 10.1183/16000617.0054-2019

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (2173KB)

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/