Role of Hypoxia-Inducible Factor 1α in Adaptation to Hypoxia in the Pathogenesis of Novel Coronavirus Disease 2019
Roman E. Kalinin , Igor' A. Suchkov , Sergey N. Raitsev , Valentina I. Zvyagina , Eduard S. Bel'skikh
I.P. Pavlov Russian Medical Biological Herald ›› 2024, Vol. 32 ›› Issue (1) : 133 -144.
Role of Hypoxia-Inducible Factor 1α in Adaptation to Hypoxia in the Pathogenesis of Novel Coronavirus Disease 2019
INTRODUCTION: A novel coronavirus (severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)) emerged in December 2019 and rapidly spread over the world having provoked a pandemic of respiratory disease. This highly pathogenic virus can attack the lung tissue and derange gas exchange leading to acute respiratory distress syndrome and systemic hypoxia. Hypoxic conditions trigger activation of adaptation mechanisms including hypoxia-inducible factor-1á (HIF-1á) which is involved in the regulation of the key processes, e. g, proliferation and metabolism of cells and angiogenesis. Besides, the level of HIF-1á expression is associated with the intensity of the immune response of an organism including that of the innate immunity mediating inflammatory reaction. Therefore, understanding the peculiarities of the mechanisms underlying the pathogenesis of this disease is of great importance for effective therapy of coronavirus disease 2019 (COVID-19).
AIM: Analysis of the current data on HIF-1á and its effect on the pathogenesis and progression of COVID-19.
The analysis of the relevant domestic and international literature sources was performed in the following sections: HIF-1á as a key factor of adaptation to hypoxia, targets for HIF-1á in the aspect of the pathogenesis of COVID-19, disorders in HIF-1á-mediated adaptation to hypoxia as an element of the pathogenesis of hyperactivation of the immune cells.
CONCLUSION: HIF-1á prevents penetration of SARS-CoV-2 virus into a cell and primarily acts as the main regulator of the proinflammatory activity at the inflammation site surrounded by hypoxia. In the conditions of the deranged metabolic flexibility, a high level of HIF-1á evokes an excessive inflammatory response of the immune cells. A high HIF-1á level in cells of the inflammation focus is associated with enhanced production of the factors of angiogenesis mediating vascular permeability and capillary leakage process. This is accompanied by tissue damage and organ failure. At the same time, HIF-1á can mediate the anti-inflammatory effect through activation of adenosine receptor-dependent pathway, which is considered as a probable protection of cells and organs against damage by hyperactive immune cells.
COVID-19 / hypoxia / HIF-1 / cytokine storm / adaptation mechanisms
| [1] |
WHO. Novel Coronavirus (2019-nCoV). Situation Report — 1. 21 January 2020 [Internet]. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4. Accessed: 2023 January 31. |
| [2] |
Phan LT, Nguyen TV, Luong QC, et al. Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam. N Engl J Med. 2020;382(9):872–4. doi: 10.1056/NEJMc2001272 |
| [3] |
Phan L.T., Nguyen T.V., Luong Q.C., et al. Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam // N. Engl. J. Med. 2020. Vol. 382, No. 9. P. 872–874. doi: 10.1056/NEJMc2001272 |
| [4] |
Serebrovska ZO, Chong EY, Serebrovska TV, et al. Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin. 2020;41(12):1539–46. doi: 10.1038/s41401-020-00554-8 |
| [5] |
Serebrovska Z.O., Chong E.Y., Serebrovska T.V., et al. Hypoxia, HIF-1, and COVID-19: from pathogenic factors to potential therapeutic targets // Acta Pharmacol. Sin. 2020. Vol. 41, No. 12. P. 1539–1546. doi: 10.1038/s41401-020-00554-8 |
| [6] |
Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1–9. doi: 10.12932/AP-200220-0772 |
| [7] |
Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic // Asian Pac. J. Allergy Immunol. 2020. Vol. 38, No. 1. P. 1–9. doi: 10.12932/AP-200220-0772 |
| [8] |
Hirota K. Hypoxia-dependent signaling in perioperative and critical care medicine. J Anesth. 2021;35(5):741–56. doi: 10.1007/s00540-021-02940-w |
| [9] |
Hirota K. Hypoxia-dependent signaling in perioperative and critical care medicine // J. Anesth. 2021. Vol. 35, No. 5. P. 741–756. doi: 10.1007/s00540-021-02940-w |
| [10] |
Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001;13(2):167–71. doi: 10.1016/s0955-0674(00)00194-0 |
| [11] |
Semenza G.L. HIF-1 and mechanisms of hypoxia sensing // Curr. Opin. Cell Biol. 2001. Vol. 13, No. 2. P. 167–171. doi: 10.1016/s0955-0674(00)00194-0 |
| [12] |
Levchenkova OS, Novikov VE. Inducers of the regulatory factor to hypoxia adaptation. I. P. Pavlov Russian Medical Biological Herald. 2014;(2):133–43. (In Russ). |
| [13] |
Левченкова О.С., Новиков В.Е. Индукторы регуляторного фактора адаптации к гипоксии // Российский медико-биологический вестник имени академика И. П. Павлова. 2014. № 2. С. 133–143. |
| [14] |
Batah SS, Fabro AT. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians. Respir Med. 2021;176:106239. doi: 10.1016/j.rmed.2020.106239 |
| [15] |
Batah S.S., Fabro A.T. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians // Respir. Med. 2021. Vol. 176. P. 106239. doi: 10.1016/j.rmed.2020.106239 |
| [16] |
Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev. 2019;5(18):1–22. doi: 10.1038/s41572-019-0069-0 |
| [17] |
Matthay M.A., Zemans R.L., Zimmerman G.A., et al. Acute respiratory distress syndrome // Nat. Rev. 2019. Vol. 5, No. 18. P. 1–22. doi: 10.1038/s41572-019-0069-0 |
| [18] |
Marini JJ, Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA. 2020;323(22):2329–30. doi: 10.1001/jama.2020.6825 |
| [19] |
Marini J.J., Gattinoni L. Management of COVID-19 Respiratory Distress // JAMA. 2020. Vol. 323, No. 22. P. 2329–2330. doi: 10.1001/jama.2020.6825 |
| [20] |
Radovanovic D, Rizzi M, Pini S, et al. Helmet CPAP to Treat Acute Hypoxemic Respiratory Failure in Patients with COVID-19: A Management Strategy Proposal. J Clin Med. 2020;9(4):1191. doi: 10.3390/jcm9041191 |
| [21] |
Radovanovic D., Rizzi M., Pini S., et al. Helmet CPAP to Treat Acute Hypoxemic Respiratory Failure in Patients with COVID-19: A Management Strategy Proposal // J. Clin Med. 2020;9(4):1191. doi: 10.3390/jcm9041191 |
| [22] |
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–81. doi: 10.1016/S2213-2600(20)30079-5 |
| [23] |
Yang X., Yu Y., Xu J., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study // Lancet Resp. Med. 2020. Vol. 8, No. 5. P. 475–481. doi: 10.1016/S2213-2600(20)30079-5 |
| [24] |
Guarnotta V, Ferrigno R, Martino M, et al. Glucocorticoid excess and COVID-19 disease. Rev Endocr Metab Disord. 2021;22(4):703–14. doi: 10.1007/s11154-020-09598-x |
| [25] |
Guarnotta V., Ferrigno R., Martino M., et al. Glucocorticoid excess and COVID-19 disease // Rev. Endocr. Metab. Disord. 2021. Vol. 22, No. 4. P. 703–714. doi: 10.1007/s11154-020-09598-x |
| [26] |
Prabhakar NR, Semenza GL. Adaptive and maladaptive cardio-respiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012;92(3):967–1003. doi: 10.1152/physrev.00030.2011 |
| [27] |
Prabhakar N.R., Semenza G.L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2 // Physiol. Rev. 2012. Vol. 92, No. 3. P. 967–1003. doi: 10.1152/physrev.00030.2011 |
| [28] |
Ravenna L, Salvatori L, Russo MA. HIF3α: the little we know. FEBS J. 2016;283(6):993–1003. doi: 10.1111/febs.13572 |
| [29] |
Ravenna L., Salvatori L., Russo M.A. HIF3α: the little we know // FEBS J. 2016. Vol. 283, No. 6. P. 993–1003. doi: 10.1111/febs.13572 |
| [30] |
Zhukova AG, Kazitskaya AS, Sazontova TG, et al. Hypoxia-inducible factor (HIF): structure, function, and genetic polymorphism. Hygiene and Sanitation, Russian Journal. 2019;98(7):723–8. (In Russ). doi: 10.18821/0016-9900-2019-98-7-723-728 |
| [31] |
Жукова А.Г., Казицкая А.С., Сазонтова Т.Г., и др. Гипоксией индуцируемый фактор (HIF): структура, функции и генетический полиморфизм // Гигиена и санитария. 2019. Т. 98, № 7. С. 723–728. doi: 10.18821/0016-9900-2019-98-7-723-728 |
| [32] |
Diao X, Ye F, Zhang M, et al. Identification of oleoylethanolamide as an endogenous ligand for HIF-3α. Nat Commun. 2022;13(1):2529. doi: 10.1038/s41467-022-30338-z |
| [33] |
Diao X., Ye F., Zhang M., et al. Identification of oleoylethanolamide as an endogenous ligand for HIF-3α // Nat. Commun. 2022. Vol. 13, No. 1. P. 2529. doi: 10.1038/s41467-022-30338-z |
| [34] |
Zeidan EM, Hossain MA, El-Daly M, et al. Mitochondrial Regulation of the Hypoxia-Inducible Factor in the Development of Pulmonary Hypertension. J Clin Med. 2022;11(17):5219. doi: 10.3390/jcm11175219 |
| [35] |
Zeidan E.M., Hossain M.A., El-Daly M., et al. Mitochondrial Regulation of the Hypoxia-Inducible Factor in the Development of Pulmonary Hypertension // J. Clin. Med. 2022. Vol. 11, No. 17. P. 5219. doi: 10.3390/jcm11175219 |
| [36] |
Urrutia AA, Aragonés J. HIF Oxygen Sensing Pathways in Lung Biology. Biomedicines. 2018;6(2):68. doi: 10.3390/biomedicines6020068 |
| [37] |
Urrutia A.A., Aragonés J. HIF Oxygen Sensing Pathways in Lung Biology // Biomedicines. 2018. Vol. 6, No. 2. P. 68. doi: 10.3390/biomedicines6020068 |
| [38] |
Luk’yanova LD. Signal’nyye mekhanizmy gipoksii. Moscow; 2019. (In Russ). |
| [39] |
Лукьянова Л.Д. Сигнальные механизмы гипоксии. М.; 2019. |
| [40] |
Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta. 2016;1857(8):1086–101. doi: 10.1016/j.bbabio. 2016.03.012 |
| [41] |
Tretter L., Patocs A., Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis // Biochim. Biophys. Acta. 2016. Vol. 1857, No. 8. P. 1086–1101. doi: 10.1016/j.bbabio.2016.03.012 |
| [42] |
Xiao M, Yang H, Xu W, et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012; 26(12):1326–38. doi: 10.1101/gad.191056.112 |
| [43] |
Xiao M., Yang H., Xu W., et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors // Genes Dev. 2012. Vol. 26, No. 12. P. 1326–1338. doi: 10.1101/gad.191056.112 |
| [44] |
Paredes F, Williams HC, San Martin A. Metabolic adaptation in hypoxia and cancer. Cancer Lett. 2021;502:133–42. doi: 10.1016/j.canlet. 2020.12.020 |
| [45] |
Paredes F., Williams H.C., San Martin A. Metabolic adaptation in hypoxia and cancer // Cancer Lett. 2021. Vol. 502. P. 133–142. doi: 10.1016/j.canlet.2020.12.020 |
| [46] |
Prikhodko VA, Selizarova NO, Okovityi SV. Molecular mechanisms for hypoxia development and adaptation to it. Part I. Arkhiv Patologii. 2021;83(2):52–61. (In Russ). doi: 10.17116/patol20218302152 |
| [47] |
Приходько В.А., Селизарова Н.О., Оковитый С.В. Молекулярные механизмы развития гипоксии и адаптации к ней. Часть I // Архив патологии. 2021. Т. 83, № 2. С. 52–61. doi: 10.17116/patol20218302152 |
| [48] |
Baltazar F, Afonso J, Costa M, et al. Lactate Beyond a Waste Metabolite: Metabolic Affairs and Signaling in Malignancy. Front Oncol. 2020;10:231. doi: 10.3389/fonc.2020.00231 |
| [49] |
Baltazar F., Afonso J., Costa M., et al. Lactate Beyond a Waste Metabolite: Metabolic Affairs and Signaling in Malignancy // Front. Oncol. 2020. Vol. 10. P. 231. doi: 10.3389/fonc.2020.00231 |
| [50] |
Schober AS, Berra E. DUBs, New Members in the Hypoxia Signaling club. Front Oncol. 2016;6:53. doi: 10.3389/fonc.2016.00053 |
| [51] |
Schober A.S., Berra E. DUBs, New Members in the Hypoxia Signaling club // Front. Oncol. 2016. Vol. 6. P. 53. doi: 10.3389/fonc.2016.00053 |
| [52] |
Paz Ocaranza M, Riquelme JA, García L, et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17(2):116–29. doi: 10.1038/s41569-019-0244-8 |
| [53] |
Paz Ocaranza M., Riquelme J.A., García L., et al. Counter-regulatory renin-angiotensin system in cardiovascular disease // Nat. Rev. Cardiol. 2020. Vol. 17, No. 2. P. 116–129. doi: 10.1038/s41569-019-0244-8 |
| [54] |
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–80.e8. doi: 10.1016/j.cell.2020.02.052 |
| [55] |
Hoffmann M., Kleine–Weber H., Schroeder S., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor // Cell. 2020. Vol. 181, No. 2. P. 271–280.e8. doi: 10.1016/j.cell.2020.02.052 |
| [56] |
Lian G, Li X, Zhang L, et al. Macrophage metabolic reprogramming aggravates aortic dissection through the HIF1α-ADAM17 pathway*. EBioMedicine. 2019;49:291–304. doi: 10.1016/j.ebiom.2019.09.041 |
| [57] |
Lian G., Li X., Zhang L., et al. Macrophage metabolic reprogramming aggravates aortic dissection through the HIF1α-ADAM17 pathway* // EBioMedicine. 2019. Vol. 49. P. 291–304. doi: 10.1016/j.ebiom.2019.09.041 |
| [58] |
Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–90. doi: 10.1007/s00134-020-05985-9 |
| [59] |
Zhang H., Penninger J.M., Li Y., et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target // Intensive Care Med. 2020. Vol. 46, No. 4. P. 586–590. doi: 10.1007/s00134-020-05985-9 |
| [60] |
Zhang R, Su H, Ma X, et al. MiRNA let-7b promotes the development of hypoxic pulmonary hypertension by targeting ACE2. Am J Physiol Lung Cell Mol Physiol. 2019;316(3):L547–57. doi: 10.1152/ajplung.00387.2018 |
| [61] |
Zhang R., Su H., Ma X., et al. MiRNA let-7b promotes the development of hypoxic pulmonary hypertension by targeting ACE2 // Am. J. Physiol. Lung Cell. Mol. Physiol. 2019. Vol. 316, No. 3. P. L547–L557. doi: 10.1152/ajplung.00387.2018 |
| [62] |
Fernandez EV, Reece KM, Ley AM, et al. Dual targeting of the androgen receptor and hypoxia-inducible factor 1α pathways synergistically inhibits castration-resistant prostate cancer cells. Mol Pharmacol. 2015;87(6):1006–12. doi: 10.1124/mol.114.097477 |
| [63] |
Fernandez E.V., Reece K.M., Ley A.M., et al. Dual targeting of the androgen receptor and hypoxia-inducible factor 1α pathways syner- gistically inhibits castration-resistant prostate cancer cells // Mol. Pharmacol. 2015. Vol. 87, No. 6. P. 1006–1012. doi: 10.1124/mol.114.097477 |
| [64] |
Wing PAC, Keeley TP, Zhuang X, et al. Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Rep. 2021;35(3):109020. doi: 10.1016/j.celrep.2021.109020 |
| [65] |
Wing P.A.C., Keeley T.P., Zhuang X., et al. Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells // Cell Rep. 2021. Vol. 35, No. 3. P. 109020. doi: 10.1016/j.celrep.2021.109020 |
| [66] |
Olson KA, Schell JC, Rutter J, et al. Pyruvate and Metabolic Flexibility: Illuminating a Path Toward Selective Cancer Therapies. Trends Biochem Sci. 2016;41(3):219–30. doi: 10.1016/j.tibs.2016.01.002 |
| [67] |
Olson K.A., Schell J.C., Rutter J., et al. Pyruvate and Metabolic Flexibility: Illuminating a Path Toward Selective Cancer Therapies // Trends Biochem. Sci. 2016. Vol. 41, No. 3. P. 219–230. doi: 10.1016/j.tibs.2016.01.002 |
| [68] |
Sulkshane P, Ram J, Thakur A, et al. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biol. 2021;45:102047. doi: 10.1016/j.redox.2021.102047 |
| [69] |
Sulkshane P., Ram J., Thakur A., et al. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia // Redox Biol. 2021. Vol. 45. P. 102047. doi: 10.1016/j.redox.2021.102047 |
| [70] |
Smith RL, Soeters MR, Wüst RCI, et al. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr Rev. 2018;39(4):489–517. doi: 10.1210/er.2017-00211 |
| [71] |
Smith R.L., Soeters M.R., Wüst R.C.I., et al. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease // Endocr. Rev. 2018. Vol. 39, No. 4. P. 489–517. doi: 10.1210/er.2017-00211 |
| [72] |
Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019;95(7):912–9. doi: 10.1080/09553002.2019.1589653 |
| [73] |
Vaupel P., Schmidberger H., Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression // Int. J. Radiat. Biol. 2019. Vol. 95, No. 7. P. 912–919. doi: 10.1080/09553002.2019.1589653 |
| [74] |
Semenza GL. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 2009;19(1):12–6. doi: 10.1016/j.semcancer.2008.11.009 |
| [75] |
Semenza G.L. Regulation of cancer cell metabolism by hypoxia-inducible factor 1 // Semin. Cancer Biol. 2009. Vol. 19, No. 1. P. 12–16. doi: 10.1016/j.semcancer.2008.11.009 |
| [76] |
Walmsley SR, Chilvers ER, Thompson AA, et al. Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. J Clin Invest. 2011;121(3):1053–63. doi: 10.1172/JCI43273 |
| [77] |
Walmsley S.R., Chilvers E.R., Thompson A.A., et al. Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice // J. Clin. Invest. 2011. Vol. 121, No. 3. P. 1053–1063. doi: 10.1172/JCI43273 |
| [78] |
Jahani M, Dokaneheifard S, Mansouri K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J Inflamm (Lond). 2020;17:33. doi: 10.1186/s12950-020-00263-3 |
| [79] |
Jahani M., Dokaneheifard S., Mansouri K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm // J. Inflamm. (Lond). 2020. Vol. 17. P. 33. doi: 10.1186/s12950-020-00263-3 |
| [80] |
Rajasundaram S. Adenosine A2A Receptor Signaling in the Immunopathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol. 2018;9:402. doi: 10.3389/fimmu.2018.00402 |
| [81] |
Rajasundaram S. Adenosine A2A Receptor Signaling in the Immunopathogenesis of Experimental Autoimmune Encephalomyelitis // Front. Immunol. 2018. Vol. 9. P. 402. doi: 10.3389/fimmu.2018.00402 |
| [82] |
Galván–Peña S, O'Neill LAJ. Metabolic reprograming in macrophage polarization. Front Immunol. 2014;5:420. doi: 10.3389/fimmu. 2014.00420 |
| [83] |
Galván–Peña S., O'Neill L.A.J. Metabolic reprograming in macrophage polarization // Front. Immunol. 2014. Vol. 5. P. 420. doi: 10.3389/fimmu. 2014.00420 |
| [84] |
Shapouri–Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40. doi: 10.1002/jcp.26429 |
| [85] |
Shapouri–Moghaddam A., Mohammadian S., Vazini H., et al. Macrophage plasticity, polarization, and function in health and disease // J. Cell. Physiol. 2018. Vol. 233, No. 9. P. 6425–6440. doi: 10.1002/jcp.26429 |
| [86] |
Ramasamy S, Subbian S. Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clin Microbiol Rev. 2021;34(3):e00299-20. doi: 10.1128/CMR.00299-20 |
| [87] |
Ramasamy S., Subbian S. Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis // Clin. Microbiol. Rev. 2021. Vol. 34, No. 3. P. e00299–20. doi: 10.1128/CMR.00299-20 |
| [88] |
Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer. 2011;2(12):1097–105. doi: 10.1177/1947601911423031 |
| [89] |
Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies // Genes Cancer. 2011. Vol. 2, No. 12. P. 1097–1105. doi: 10.1177/1947601911423031 |
| [90] |
Walmsley SR, Print C, Farahi N, et al. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med. 2005;201(1):105–15. doi: 10.1084/jem.20040624 |
| [91] |
Walmsley S.R., Print C., Farahi N., et al. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity // J. Exp. Med. 2005. Vol. 201, No. 1. P. 105–115. doi: 10.1084/jem.20040624 |
| [92] |
Juss JK, House D, Amour A, et al. Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition. Am J Respir Crit Care Med. 2016;194(8):961–73. doi: 10.1164/rccm.201509-1818OC |
| [93] |
Juss J.K., House D., Amour A., et al. Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition // Am. J. Respir. Crit. Care Med. 2016. Vol. 194, No. 8. P. 961–973. doi: 10.1164/rccm.201509-1818OC |
| [94] |
Lyubavin AV, Kotlyarov SN. Peculiarities of the Course of Acute Coronary Syndrome in Patients with New Coronavirus Infection. Nauka Molodykh (Eruditio Juvenium). 2022;10(1):101–12. (In Russ). doi: 10.23888/HMJ2022101101-112 |
| [95] |
Любавин А.В., Котляров С.Н. Особенности течения острого коронарного синдрома у пациентов с новой коронавирусной инфекцией COVID-19 // Наука молодых (Eruditio Juvenium). 2022. Т. 10, № 1. С. 101–112. doi: 10.23888/HMJ2022101101-112 |
| [96] |
Chauhan A, Kaur R, Chakrbarti P, et al. ‘Silent Hypoxemia’ Leads to Vicious Cycle of Infection, Coagulopathy and Cytokine Storm in COVID-19: Can Prophylactic Oxygen Therapy Prevent It? Indian J Clin Biochem. 2021;36(4):468–72. doi: 10.1007/s12291-021-00967-0 |
| [97] |
Chauhan A., Kaur R., Chakrbarti P., et al. ‘Silent Hypoxemia’ Leads to Vicious Cycle of Infection, Coagulopathy and Cytokine Storm in COVID-19: Can Prophylactic Oxygen Therapy Prevent It? // Indian J. Clin. Biochem. 2021. Vol. 36, No. 4. P. 468–472. doi: 10.1007/s12291-021-00967-0 |
Eco-Vector
/
| 〈 |
|
〉 |