Change in Frequency Modulation of Electroencephalographic Activity in Imaginary and Real Limb Movement
Yaroslav А. Тurovskiу , Anastasiya S. Davydova , Viktor Yu. Alekseyev
I.P. Pavlov Russian Medical Biological Herald ›› 2023, Vol. 31 ›› Issue (4) : 623 -634.
Change in Frequency Modulation of Electroencephalographic Activity in Imaginary and Real Limb Movement
INTRODUCTION: Investigation of electroencephalographic activity as a marker of cognitive processes in the brain traditionally focuses on the analysis in the frequency domain considering rhythms of encephalogram (EEG) as potential carriers of information needed for research. At the same time, analysis of the EEG frequency modulation effects requires improvement of approaches in the field of digital signal processing. Taking into account the fact that frequency modulation of EEG, as well as amplitude modulation, can be a marker of a number of states, it seems promising to develop a method for detecting this phenomenon and using it to evaluate a number of parameters of the brain dynamics associated with biological feedback systems. AIM: To evaluate the phenomena of frequency modulation when the user performs tasks associated with the control of external devices based on the brain–computer interface, implemented in the phenomena of electrical activity in the motor cortex area.
MATERIALS AND METHODS: To obtain the data, a group of thirty volunteers of both genders aged 17 to 23 years was formed. The participants of the experiment had to execute four commands and repeat them in an unknown order set by the program. The experiment was conducted in two ways: physically and mentally. That is, in the first method, each command corresponded to a certain movement of a person, in the second — the same commands were executed in imagination, the movement was imagined mentally. The command was considered successfully executed if the volunteer managed to repeat and hold the position set by the program for two seconds.
RESULTS: Based on the developed method for evaluating the frequency modulation of the EEG, the dynamics of the electrical activity of the brain was studied in the range of 9 Hz to 12 Hz when a user was performing real and imaginary movements. A comparative analysis showed that the differences were mostly recorded in the condition when the subject did not achieve the goal. At the same time, the differences to a greater extent were observed in the experiments where the subject had to make real, rather than imaginary movements. The significant differences between low- and high-frequency modulations were associated with the inability for the user to generate the requested command, which he could see by the biofeedback mechanism. It has been established that the greater the number of high-frequency restructures observed on the EEG, the smaller number of low-frequency restructures occur at the same epoch of analysis.
CONCLUSION: The results obtained considerably expand the understanding of the mechanisms of frequency modulation of the EEG. In general, the methods and algorithms underlying the analysis that permitted their identification can be used to solve a wide range of tasks related to processing of EEG signals, including improvement of methods for detecting user errors by EEG when controlling brain-computer interface devices.
brain-computer interface / neurocomputer interface / imaginary movements / frequency modulation
| [1] |
Krausz G, Scherer R, Korisek G, et al. Critical decision-speed and information transfer in the «Graz Brain-Computer Interface». Appl Psychophysiol Biofeedback. 2003;28(3):233–40. doi: 10.1023/a:1024637331493 |
| [2] |
Krausz G., Scherer R., Korisek G., et al. Critical decision-speed and information transfer in the «Graz Brain-Computer Interface» // Аppl. Psychophysiol. Biofeedback. 2003. Vol. 28, No. 3. P. 233–240. doi: 10.1023/a:1024637331493 |
| [3] |
Yadav D, Yadav S, Veer K. A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges. J Neurosci Methods. 2020;346:108918. doi: 10.1016/j.jneumeth.2020.108918 |
| [4] |
Yadav D., Yadav S., Veer K. A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges // J. Neurosci. Methods. 2020. Vol. 346. P. 108918. doi: 10.1016/j.jneumeth.2020.108918 |
| [5] |
Saravanakumar D, Ramasubba Reddy M. A Visual Keyboard System using Hybrid Dual Frequency SSVEP Based Brain Computer Interface with VOG Integration. In: 2018 International Conference on Cyberworlds (CW); 03–05 October 2018. Singapore; 2018. P. 258–63. doi: 10.1109/CW.2018.00053 |
| [6] |
Saravanakumar D., Ramasubba Reddy M. A Visual Keyboard System using Hybrid Dual Frequency SSVEP Based Brain Computer Interface with VOG Integration. In: 2018 International Conference on Cyberworlds (CW); 03–05 October 2018. Singapore; 2018. P. 258–263. doi: 10.1109/CW.2018.00053 |
| [7] |
Müller–Putz GR, Eder E, Wriessnegger SC, et al. Comparison of DFT and lock-in amplifier features and search for optimal electrode positions in SSVEP-based BCI. J Neurosci Methods. 2008;168(1):174–81. doi: 10.1016/j.jneumeth.2007.09.024 |
| [8] |
Müller–Putz G.R., Eder E., Wriessnegger S.C., et al. Comparison of DFT and lock-in amplifier features and search for optimal electrode positions in SSVEP-based BCI // J. Neurosci. Methods. 2008. Vol. 168, No. 1. Р. 174–181. doi: 10.1016/j.jneumeth.2007.09.024 |
| [9] |
Fisher CJ, Moravec CS, Khorshid L. The «How and Why» of Group Biofeedback for Chronic Disease Management. Appl Psychophysiol Biofeedback. 2018;43(4):333–40. doi: 10.1007/s10484-018-9411-7 |
| [10] |
Fisher C.J., Moravec C.S., Khorshid L. The «How and Why» of Group Biofeedback for Chronic Disease Management // Аppl. Psychophysiol. Biofeedback. 2018. Vol. 43, No. 4. P. 333–340. doi: 10.1007/s10484-018-9411-7 |
| [11] |
Ponomaryov V.I., Badillo L., Juarez C., et al. Storage analysis and compression of signals with application in medicine. In: Proceedings Volume 5021: Storage and Retrieval for Media Databases 2003; 22–23 January 2003. Santa Clara, USA; 2003;5021:429–37. doi: 10.1117/12.476303 |
| [12] |
Ponomaryov V.I., Badillo L., Juarez C., et al. Storage analysis and compression of signals with application in medicine. In: Proceedings Volume 5021: Storage and Retrieval for Media Databases 2003; 22–23 January 2003. Santa Clara, USA; 2003. Vol. 5021. Р. 429–437. doi: 10.1117/12.476303 |
| [13] |
Dkhil MB, Chawech N, Wali A, et al. Towards an automatic drowsiness detection system by evaluating the alpha band of EEG signals. In: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI); 26–28 January 2017. Herl’any, Slovakia; 2017. P. 371–6. doi: 10.1109/SAMI.2017.7880336 |
| [14] |
Dkhil M.B., Chawech N., Wali A., et al. Towards an automatic drowsiness detection system by evaluating the alpha band of EEG signals. In: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI); 26–28 January 2017. Herl’any, Slovakia; 2017. P. 371–376. doi: 10.1109/SAMI.2017.7880336 |
| [15] |
Wang WJ, Zhang GP, Yang LM, et al. Revisiting signal processing with spectrogram analysis on EEG, ECG and speech signals. Future Generatıon Computer Systems. 2019;98:227–32. doi: 10.1016/j.future.2018.12.060 |
| [16] |
Wang W.J., Zhang G.P., Yang L.M., et al. Revisiting signal processing with spectrogram analysis on EEG, ECG and speech signals // Future Generatıon Computer Systems. 2019. Vol. 98. P. 227–232. doi: 10.1016/j.future.2018.12.060 |
| [17] |
DeCusatis CM, Koay J, Litynski DM, et al. Wavelet transform: fundamentals, applications, and implementation using acousto-optic correlators. In: Proceedings Volume 2643: Acousto-Optics and Applications II; 4 October 1995. Gdansk-Jurata, Poland; 1995;2643:17–37. doi: 10.1117/12.222751 |
| [18] |
DeCusatis C.M., Koay J., Litynski D.M., et al. Wavelet transform: fundamentals, applications, and implementation using acousto-optic correlators. In: Proceedings Volume 2643: Acousto-Optics and Applications II; 4 October 1995. Gdansk-Jurata, Poland; 1995. Vol. 2643. Р. 17–37. doi: 10.1117/12.222751 |
| [19] |
Kiroĭ NV, Voĭnov VB, Mamin RA, et al. Spatial synchronization of brain bioelectrical activity in a state of intellectual activity. Fiziologiya Cheloveka. 1988;14(2):326–8. (In Russ). |
| [20] |
Кирой Н.В., Войнов В.Б., Мамин Р.А., и др. Пространственная синхронизация биоэлектрической активности мозга в состоянии интеллектуальной деятельности // Физиология человека. 1988. Т. 14, № 2. С. 326–328. |
| [21] |
Nam CS, Nijholt NA, Lotte F, editors. Brain-Computer Interfaces Handbook. Technological and Theoretical Advances. New-York: CRC Press; 2018. |
| [22] |
Nam C.S., Nijholt N.A., Lotte F., editors. Brain-Computer Interfaces Handbook. Technological and Theoretical Advances. N.-Y.: CRC Press; 2018. |
| [23] |
Pfurtscheller G, Brunner C, Schlögl A, et al. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage. 2006;31(1):153–9. doi: 10.1016/j.neuroimage.2005.12.003 |
| [24] |
Pfurtscheller G., Brunner C., Schlögl A., et al. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks // Neuroimage. 2006. Vol. 31, No. 1. P. 153–159. doi: 10.1016/j.neuroimage.2005.12.003 |
| [25] |
Emami Z, Chau T. The effects of visual distractors on cognitive load in a motor imagery brain-computer interface. Behav Brain Res. 2020;378:112240. doi: 10.1016/j.bbr.2019.112240 |
| [26] |
Emami Z., Chau T. The effects of visual distractors on cognitive load in a motor imagery brain-computer interface // Behav. Brain Res. 2020. Vol. 378. P. 112240. doi: 10.1016/j.bbr.2019.112240 |
| [27] |
Hommelsen M, Schneiders M, Schuld C, et al. Sensory feedback interferes with mu rhythm based detection of motor commands from electroencephalographic signals. Front Hum Neurosci. 2017;11:253. doi: 10.3389/fnhum.2017.00523 |
| [28] |
Hommelsen M., Schneiders M., Schuld C., et al. Sensory Feedback Interferes with Mu Rhythm Based Detection of Motor Commands from Electroencephalographic Signals // Front. Hum. Neurosci. 2017. Vol. 11. P. 523. doi: 10.3389/fnhum.2017.00523 |
| [29] |
Turovsky YaA, Borzunov SV, Alekseev VYu, et al. Frequency Modulation of Electroencephalogram under Photostimulation. Biofizika. 2021;66(3):583–9. (In Russ). doi: 10.31857/S0006302921030194 |
| [30] |
Туровский Я.А., Борзунов С.В., Алексеев В.Ю., и др. Частотная модуляция электроэнцефалограммы при фотостимуляции // Биофизика. 2021. T. 66, № 3. C. 583–589. doi: 10.31857/S0006302921030194 |
| [31] |
Kiroĭ NV, Vladimirskiĭ BM, Aslanian EV, et al. Electrographic correlates of real and imaginary movements: spectral analysis. Zhurnal Vysshei Nervnoi Deiatelnosti imeni I P Pavlova. 2010;60(5):525–33. (In Russ). |
| [32] |
Кирой Н.В., Владимирский Б.М., Асланян Е.В., и др. Электрографические корреляты реальных и мысленных движений: спектральный анализ // Журнал высшей нервной деятельности. 2010. Т. 60, № 5. С. 525–533. |
| [33] |
Vasil’eva VV. Spectral and coherent characteristics of EEG in women during various phases of menstrual cycle. Bull Exp Biol Med. 2005;140(4):383–4. (In Russ). doi: 10.1007/s10517-005-0496-7 |
| [34] |
Vasil’eva V.V. Spectral and coherent characteristics of EEG in women during various phases of menstrual cycle // Bull. Exp. Biol. Med. 2005. Vol. 140, No. 4. P. 383–384. doi: 10.1007/s10517-005-0496-7 |
| [35] |
Khodyrev GN, Tsirkin VI Parameters of main eeg rhythms during the follicular and luteal phases of the menstrual cycle. Vestnik Nizhegorodskogo Universiteta imeni N.I. Lobachevskogo. 2012;(6):76–82. (In Russ). |
| [36] |
Ходырев Г.Н., Циркин В.И. Параметры основных ритмов ЭЭГ в фолликулярную и лютеиновую фазы менструального цикла // Вестник Нижегородского университета им. Н.И. Лобачевского. 2012. № 6 (1). С. 76–82. |
| [37] |
Fateev MM, Belyaev DA, Lomteva AI. Changes in the electroencephalogram indicators of girls in different phases of the ovarian-menstrual cycle. ENIGMA. 2020;(22,Pt 2):123–9. (In Russ). |
| [38] |
Фатеев М.М., Беляев Д.А., Ломтева А.И. Изменение показателей электроэнцефалограммы девушек в различные фазы овариально-менструального цикла // ЭНИГМА. 2020. № 22, Ч. 2. С. 123–129. |
| [39] |
Bazanova OM, Kondratenko AV, Kuz’minova OI, et al. EEG alpha indices in dependence on the menstrual cycle phase and salivary progesterone. Fiziologiya Cheloveka. 2014;40(2):31–40. (In Russ). |
| [40] |
Базанова О.М., Кондратенко А.В., Кузьминова О.И., и др. Альфа-активность ЭЭГ в зависимости от стадии менструального цикла и уровня прогестерона // Физиология человека. 2014. Т. 40, № 2. С. 31–40. |
Eco-Vector
/
| 〈 |
|
〉 |