Pathogenetic Aspects of Intraventricular Hemorrhages in Extremely Premature Infants

Ol'ga P. Saryeva , Elena V. Protsenko

I.P. Pavlov Russian Medical Biological Herald ›› 2023, Vol. 31 ›› Issue (3) : 481 -488.

PDF (1060KB)
I.P. Pavlov Russian Medical Biological Herald ›› 2023, Vol. 31 ›› Issue (3) : 481 -488. DOI: 10.17816/PAVLOVJ119975
Reviews
review-article

Pathogenetic Aspects of Intraventricular Hemorrhages in Extremely Premature Infants

Author information +
History +
PDF (1060KB)

Abstract

INTRODUCTION: Intraventricular hemorrhage (IVH) is one of the most common types of the brain damage in newborns with extremely low and very low body mass. The main source of IVH in the extremely premature infants is the germinal matrix. This is a subependymal structure of the brain consisting of poorly differentiated, randomly arranged cells, well vascularized with vessels with a poor connective-tissue support. The germinal matrix a key supplier of neurons and glial cells of the brain is unique among the brain regions for its specific rate of angiogenesis and selective vulnerability to hemorrhages during its development. Etiology and pathogenesis of IVH in premature infants are highly multifactorial and have not been fully studied. In this review, the data on the key points of the pathogenesis of IVH in premature infants are generalized.

CONCLUSION: IVH is a potentially destructive disease, in the study of which a certain progress has been achieved in elucidating the causes and mechanisms of brain damage. In-depth understanding of the key points of the pathogenesis of intraventricular hemorrhage will permit to choose the optimal management tactics and develop new approaches to prevention and treatment of this pathology.

Keywords

intraventricular hemorrhage / pathogenesis / germinal matrix / extremely premature infants

Cite this article

Download citation ▾
Ol'ga P. Saryeva, Elena V. Protsenko. Pathogenetic Aspects of Intraventricular Hemorrhages in Extremely Premature Infants. I.P. Pavlov Russian Medical Biological Herald, 2023, 31(3): 481-488 DOI:10.17816/PAVLOVJ119975

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Saryieva OP, Protsenko EV, Kulida LV. Intraventricular hemorrhages in premature newborns: predictors of development. Rossiyskiy Vestnik Perinatologii i Pediatrii. 2022;67(3):11–7. (In Russ). doi: 10.21508/1027-4065-2022-67-3-11-17

[2]

Сарыева О.П., Проценко Е.В., Кулида Л.В. Внутрижелудочковые кровоизлияния у глубоконедоношенных новорожденных: предикторы развития // Российский вестник перинатологии и педиатрии. 2022. Т. 67, № 3. С. 11–17. doi: 10.21508/1027-4065-2022-67-3-11-17

[3]

Deger J, Goethe EA, LoPresti MA, et al. Intraventricular Hemorrhage in Premature Infants: A Historical Review. World Neurosurg. 2021; 153:21–5. doi: 10.1016/j.wneu.2021.06.043

[4]

Deger J., Goethe E.A., LoPresti M.A., et al. Intraventricular Hemorrhage in Premature Infants: A Historical Review // World Neurosurg. 2021. Vol. 153. Р. 21–25. doi: 10.1016/j.wneu.2021.06.043

[5]

Piccolo B, Marchignoli M, Pisani F. Intraventricular hemorrhage in preterm newborn: Predictors of mortality. Acta Biomed. 2022; 93(2):e2022041. doi: 10.23750/abm.v93i2.11187

[6]

Piccolo B., Marchignoli M., Pisani F. Intraventricular hemorrhage in preterm newborn: Predictors of mortality // Acta Biomed. 2022. Vol. 93, No. 2. Р. e2022041. doi: 10.23750/abm.v93i2.11187

[7]

Siddappa AM, Quiggle GM, Lock E, et al. Predictors of severe intraventricular hemorrhage in preterm infants under 29-weeks gestation. J Matern Fetal Neonatal Med. 2021;34(2):195–200. doi: 10.1080/14767058.2019.1601698

[8]

Siddappa A.M., Quiggle G.M., Lock E., et al. Predictors of severe intraventricular hemorrhage in preterm infants under 29-weeks gestation // J. Matern. Fetal Neonatal Med. 2021. Vol. 34, No. 2. Р. 195–200. doi: 10.1080/14767058.2019.1601698

[9]

Sharma DR, Agyemang A, Ballabh P. Cerebral gray matter injuries in infants with intraventricular hemorrhage. Semin Perinatol. 2022;46(5):151595. doi: 10.1016/j.semperi.2022.151595

[10]

Sharma D.R., Agyemang A., Ballabh P. Cerebral gray matter injuries in infants with intraventricular hemorrhage // Semin. Perinatol. 2022. Vol. 46, No. 5. Р. 151595. doi: 10.1016/j.semperi.2022.151595

[11]

Safina AI, Volyanyuk EV. Long-term neuropsychiatric outcomes of deeply premature infants, prospects for diagnosis and correction. Rossiyskiy Vestnik Perinatologii i Pediatrii. 2020;65(5):227–31. (In Russ). doi: 10.21508/1027-4065-2020-65-5-227-231

[12]

Сафина А.И., Волянюк Е.В. Отдаленные психоневрологические исходы глубоко недоношенных детей, перспективы диагностики и коррекции // Российский вестник перинатологии и педиатрии. 2020. Т. 65, № 5. С. 227–231. doi: 10.21508/1027-4065-2020-65-5-227-231

[13]

Hinojosa–Rodríguez M, Harmony T, Carrillo–Prado C, et al. Clinical neuroimaging in the preterm infant: Diagnosis and prognosis. Neuroimage Clin. 2017;16:355–68. doi: 10.1016/j.nicl.2017.08.015

[14]

Hinojosa–Rodríguez M., Harmony T., Carrillo–Prado C., et al. Clinical neuroimaging in the preterm infant: Diagnosis and prognosis // Neuroimage Clin. 2017. Vol. 16. P. 355–368. doi: 10.1016/j.nicl.2017.08.015

[15]

Glukhov BM, Baydarbekova AK. Outcomes and rehabilitation potential in children with intraventricular hemorrhages in the perinatal period. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021; 121(4):19–24. (In Russ). doi: 10.17116/jnevro202112104119

[16]

Глухов Б.М., Байдарбекова А.К. Исходы заболевания и реабилитационный потенциал у детей с внутрижелудочковыми кровоизлияниями перинатального периода // Журнал неврологии и психиатрии им. C.C. Корсакова. 2021. Т. 121, № 4. С. 19–24. doi: 10.17116/jnevro202112104119

[17]

Coletti AM, Singh D, Kumar S, et al. Characterization of the ventricular-subventricular stem cell niche during human brain development. Development. 2018;145(20):dev170100. doi: 10.1242/dev.170100

[18]

Coletti A.M., Singh D., Kumar S., et al. Characterization of the ventricular-subventricular stem cell niche during human brain development // Development. 2018. Vol. 145, No. 20. Р. dev170100. doi: 10.1242/dev.170100

[19]

Snyder EJ, Pruthi S, Hernanz–Schulman M. Characterization of germinal matrix hemorrhage in extremely premature infants: recognition of posterior location and diagnostic pitfalls. Pediatr Radiol. 2022;52(1):75–84. doi: 10.1007/s00247-021-05189-3

[20]

Snyder E.J., Pruthi S., Hernanz–Schulman M. Characterization of germinal matrix hemorrhage in extremely premature infants: recognition of posterior location and diagnostic pitfalls // Pediatr. Radiol. 2022. Vol. 52, No. 1. Р. 75–84. doi: 10.1007/s00247-021-05189-3

[21]

Guillot M, Chau V, Lemyre B. Routine imaging of the preterm neonatal brain. Paediatr Child Health. 2020;25(4):249–62. doi: 10.1093/pch/pxaa033

[22]

Guillot M., Chau V., Lemyre B. Routine imaging of the preterm neonatal brain // Paediatr. Child Health. 2020. Vol. 25, No. 4. Р. 249–262. doi: 10.1093/pch/pxaa033

[23]

Leijser LM, de Vries LS. Preterm brain injury: Germinal matrix-intraventricular hemorrhage and post-hemorrhagic ventricular dilatation. Handb Clin Neurol. 2019;162:173–99. doi: 10.1016/B978-0-444-64029-1.00008-4

[24]

Leijser L.M., de Vries L.S. Preterm brain injury: Germinal matrix-intraventricular hemorrhage and post-hemorrhagic ventricular dilatation // Handb. Clin. Neurol. 2019. Vol. 162. Р. 173–199. doi: 10.1016/B978-0-444-64029-1.00008-4

[25]

Tan AP, Svrckova P, Cowan F, et al. Intracranial hemorrhage in neonates: A review of etiologies, patterns and predicted clinical outcomes. Eur J Paediatr Neurol. 2018;22(4):690–717. doi: 10.1016/j.ejpn.2018.04.008

[26]

Tan A.P., Svrckova P., Cowan F., et al. Intracranial hemorrhage in neonates: A review of etiologies, patterns and predicted clinical outcomes // Eur. J. Paediatr. Neurol. 2018. Vol. 22, No. 4. P. 690–717. doi: 10.1016/j.ejpn.2018.04.008

[27]

Egesa WI, Odoch S, Odong RJ, et al. Germinal Matrix-Intraventricular Hemorrhage: A Tale of Preterm Infants. Int J Pediatr. 2021;2021: 6622598. doi: 10.1155/2021/6622598

[28]

Egesa W.I., Odoch S., Odong R.J., et al. Germinal Matrix- Intraventricular Hemorrhage: A Tale of Preterm Infants // Int. J. Pediatr. 2021. Vol. 2021. Р. 6622598. doi: 10.1155/2021/6622598

[29]

Protsenko EV, Peretiatko LP, Saryeva OP. Pathomorphology of the ventricular germinal zone and neocortex in newborns with posthemorrhagic hydrocephalus. Arkhiv Patologii. 2017;79(2):36–40. (In Russ). doi: 10.17116/patol201779236-40

[30]

Проценко Е.В., Перетятко Л.П., Сарыева О.П. Патоморфология вентрикулярной герминативной зоны и неокортекса у новорожденных при постгеморрагической гидроцефалии // Архив патологии. 2017. Т. 79, № 2. С. 36–40. doi: 10.17116/patol201779236-40

[31]

Takashima S, Mito T, Ando Y. Pathogenesis of periventricular white matter hemorrhages in preterm infants. Brain Dev. 1986;8(1):25–30. doi: 10.1016/s0387-7604(86)80116-4

[32]

Takashima S., Mito T., Ando Y. Pathogenesis of periventricular white matter hemorrhages in preterm infants // Brain Dev. 1986. Vol. 8, No. 1. P. 25–30. doi: 10.1016/s0387-7604(86)80116-4

[33]

Tortora D, Severino M, Malova M, et al. Variability of cerebral deep venous system in preterm and term neonates evaluated on MR SWI venography. AJNR Am J Neuroradiol. 2016;37(11):2144–9. doi: 10.3174/ajnr.A4877

[34]

Tortora D., Severino M., Malova M., et al. Variability of cerebral deep venous system in preterm and term neonates evaluated on MR SWI venography // AJNR Am. J. Neuroradiol. 2016. Vol. 37, No. 11. P. 2144–2149. doi: 10.3174/ajnr.A4877

[35]

Tortora D, Severino M, Malova M, et al. Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH. Arch Dis Child Fetal Neonatal Ed. 2018;103(1):F59–65. doi: 10.1136/archdischild-2017-312710

[36]

Tortora D., Severino M., Malova M., et al. Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH // Arch. Dis. Child. Fetal Neonatal Ed. 2018. Vol. 103, No. 1. P. F59–F65. doi: 10.1136/archdischild-2017-312710

[37]

Ghazi–Birry HS, Brown WR, Moody DM, et al. Human germinal matrix: venous origin of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol. 1997;18(2):219–29.

[38]

Ghazi–Birry H.S., Brown W.R., Moody D.M., et al. Human germinal matrix: venous origin of hemorrhage and vascular characteristics // AJNR Am. J. Neuroradiol. 1997. Vol. 18, No. 2. P. 219–229.

[39]

Luo J, Luo Y, Zeng H, et al. Research Advances of Germinal Matrix Hemorrhage: An Update Review. Cell Mol Neurobiol. 2019;39(1):1–10. doi: 10.1007/s10571-018-0630-5

[40]

Luo J., Luo Y., Zeng H., et al. Research Advances of Germinal Matrix Hemorrhage: An Update Review // Cell. Mol. Neurobiol. 2019. Vol. 39, No. 1. Р. 1–10. doi: 10.1007/s10571-018-0630-5

[41]

Su B–H, Lin H–Y, Huang F–K, et al. Circulatory Management Focusing on Preventing Intraventricular Hemorrhage and Pulmonary Hemorrhage in Preterm Infants. Pediatr Neonatol. 2016;57(6):453–62. doi: 10.1016/j.pedneo.2016.01.001

[42]

Su B.–H., Lin H.–Y., Huang F.–K., et al. Circulatory Management Focusing on Preventing Intraventricular Hemorrhage and Pulmonary Hemorrhage in Preterm Infants // Pediatr. Neonatol. 2016. Vol. 57, No. 6. Р. 453–462. doi: 10.1016/j.pedneo.2016.01.001

[43]

Garvey AA, Walsh BH, Inder TE. Pathogenesis and prevention of intraventricular hemorrhage. Semin Perinatol. 2022;46(5):151592. doi: 10.1016/j.semperi.2022.151592

[44]

Garvey A.A., Walsh B.H., Inder T.E. Pathogenesis and prevention of intraventricular hemorrhage // Semin. Perinatol. 2022. Vol. 46, No. 5. Р. 151592. doi: 10.1016/j.semperi.2022.151592

[45]

Ma S, Santhosh D, Kumar TP, et al. A Brain-Region-Specific Neural Pathway Regulating Germinal Matrix Angiogenesis. Dev Cell. 2017;41(4):366–81. doi: 10.1016/j.devcel.2017.04.014

[46]

Ma S., Santhosh D., Kumar T.P., et al. A Brain-Region-Specific Neural Pathway Regulating Germinal Matrix Angiogenesis // Dev. Cell. 2017. Vol. 41, No. 4. P. 366–381. doi: 10.1016/j.devcel.2017.04.014

[47]

Nowak–Sliwinska P, Alitalo K, Allen E, et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. 2018;21(3):425–532. doi: 10.1007/s10456-018-9613-x

[48]

Nowak–Sliwinska P., Alitalo K., Allen E., et al. Consensus guidelines for the use and interpretation of angiogenesis assays // Angiogenesis. 2018. Vol. 21, No. 3. Р. 425–532. doi: 10.1007/s10456-018-9613-x

[49]

Nadeem T, Bommareddy A, Bolarinwa L, et al. Pericyte dynamics in the mouse germinal matrix angiogenesis. FASEB J. 2022;36(6):e22339. doi: 10.1096/fj.202200120R

[50]

Nadeem T., Bommareddy A., Bolarinwa L., et al. Pericyte dynamics in the mouse germinal matrix angiogenesis // FASEB J. 2022. Vol. 36, № 6. Р. e22339. doi: 10.1096/fj.202200120R

[51]

Holst CB, Brøchner CB, Vitting–Seerup K, et al. Astrogliogenesis in human fetal brain: complex spatiotemporal immunoreactivity patterns of GFAP, S100, AQP4 and YKL-40. J Anat. 2019;235(3):590–615. doi: 10.1111/joa.12948

[52]

Holst C.B., Brøchner C.B., Vitting–Seerup K., et al. Astrogliogenesis in human fetal brain: complex spatiotemporal immunoreactivity patterns of GFAP, S100, AQP4 and YKL-40 // J. Anat. 2019. Vol. 235, No. 3. Р. 590–615. doi: 10.1111/joa.12948

[53]

Parodi A, Govaert P, Horsch S, et al. Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome. Pediatr Res. 2020;(87, suppl 1):13–24. doi: 10.1038/s41390-020-0780-2

[54]

Parodi A., Govaert P., Horsch S., et al. Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome // Pediatr. Res. 2020. Vol. 87, Suppl. 1. P. 13–24. doi: 10.1038/s41390-020-0780-2

[55]

Tortora D, Uccella S, Malova M, et al. The effects of mild germinal matrix-intraventricular haemorrhage on the developmental white matter microstructure of preterm neonates: a DTI study. Eur Radiol. 2018;28(3):1157–66. doi: 10.1007/s00330-017-5060-0

[56]

Tortora D., Uccella S., Malova M., et al. The effects of mild germinal matrix-intraventricular haemorrhage on the developmental white matter microstructure of preterm neonates: a DTI study // Eur. Radiol. 2018. Vol. 28, No. 3. P. 1157–1166. doi: 10.1007/s00330-017-5060-0

[57]

Argyropoulou MI, Astrakas LG, Xydis VG, et al. Is Low-Grade Intraventricular Hemorrhage in Very Preterm Infants an Innocent Condition? Structural and Functional Evaluation of the Brain Reveals Regional Neurodevelopmental Abnormalities. AJNR Am J Neuroradiol. 2020;41(3):542–7. doi: 10.3174/ajnr.A6438

[58]

Argyropoulou M.I., Astrakas L.G., Xydis V.G., et al. Is Low-Grade Intraventricular Hemorrhage in Very Preterm Infants an Innocent Condition? Structural and Functional Evaluation of the Brain Reveals Regional Neurodevelopmental Abnormalities // AJNR Am. J. Neuroradiol. 2020. Vol. 41, No. 3. Р. 542–547. doi: 10.3174/ajnr.A6438

[59]

Ley D, Romantsik O, Vallius S, et al. High Presence of Extracellular Hemoglobin in the Periventricular White Matter Following Preterm Intraventricular Hemorrhage. Front Physiol. 2020;11:27. doi: 10.3389/fphys.2020.00027

[60]

Ley D., Romantsik O., Vallius S., et al. High Presence of Extracellular Hemoglobin in the Periventricular White Matter Following Preterm Intraventricular Hemorrhage // Front. Physiol. 2020. Vol. 11. Р. 27. doi: 10.3389/fphys.2020.00027

[61]

Ballabh P, de Vries LS. White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat Rev Neurol. 2021;17(4):199–214. doi: 10.1038/s41582-020-00447-8

[62]

Ballabh P., de Vries L.S. White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies // Nat. Rev. Neurol. 2021. Vol. 17, No. 4. Р. 199–214. doi: 10.1038/s41582-020-00447-8

[63]

McAllister JP, Guerra MM, Ruiz LC, et al. Ventricular zone disruption in human neonates with intraventricular hemorrhage. J Neuropathol Exp Neurol. 2017;76(5):358–75. doi: 10.1093/jnen/nlx017

[64]

McAllister J.P., Guerra M.M., Ruiz L.C., et al. Ventricular zone disruption in human neonates with intraventricular hemorrhage // J. Neuropathol. Exp. Neurol. 2017. Vol. 76, No. 5. Р. 358–375. doi: 10.1093/jnen/nlx017

[65]

Fejes Z, Pócsi M, Takai J, et al. Preterm Intraventricular Hemorrhage-Induced Inflammatory Response in Human Choroid Plexus Epithelial Cells. Int J Mol Sci. 2021;22(16):8648. doi: 10.3390/ijms22168648

[66]

Fejes Z., Pócsi M., Takai J., et al. Preterm Intraventricular Hemorrhage-Induced Inflammatory Response in Human Choroid Plexus Epithelial Cells // Int. J. Mol. Sci. 2021. Vol. 22, No. 16. Р. 8648. doi: 10.3390/ijms22168648

[67]

Romantsik O, Agyemang AA, Sveinsdóttir S, et al. The heme and radical scavenger α1-microglobulin (A1M) confers early protection of the immature brain following preterm intraventricular hemorrhage. J Neuroinflammation. 2019;16(1):122. doi: 10.1186/s12974-019-1486-4

[68]

Romantsik O., Agyemang A.A., Sveinsdóttir S., et al. The heme and radical scavenger α1-microglobulin (A1M) confers early protection of the immature brain following preterm intraventricular hemorrhage // J. Neuroinflammation. 2019. Vol. 16, No. 1. Р. 122. doi: 10.1186/s12974-019-1486-4

[69]

Atienza–Navarro I, Alves–Martinez P, Lubian–Lopez S, et al. Germinal Matrix-Intraventricular Hemorrhage of the Preterm Newborn and Preclinical Models: Inflammatory Considerations. Int J Mol Sci. 2020;21(21):8343. doi: 10.3390/ijms21218343

[70]

Atienza–Navarro I., Alves–Martinez P., Lubian–Lopez S., et al. Germinal Matrix-Intraventricular Hemorrhage of the Preterm Newborn and Preclinical Models: Inflammatory Considerations // Int. J. Mol. Sci. 2020. Vol. 21, No. 21. P. 8343. doi: 10.3390/ijms21218343

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1060KB)

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/