Free Radical Oxidation and Metabolic Processes of Cartilage and Bone Tissues in Animals with Surgical Model of Posttraumatic Osteoarthrosis
Svetlana V. Belova , Roman A. Zubavlenko , Ekaterina V. Gladkova , Irina V. Babushkina , Vladimir Yu. Ul'yanov
I.P. Pavlov Russian Medical Biological Herald ›› 2023, Vol. 31 ›› Issue (2) : 177 -184.
Free Radical Oxidation and Metabolic Processes of Cartilage and Bone Tissues in Animals with Surgical Model of Posttraumatic Osteoarthrosis
INTRODUCTION: Posttraumatic osteoarthrosis (PTOA) resulting from injuries of connective-tissue components of the joint, is accompanied by formation of free radicals activating chondro- and osteoresorption, which leads to fragmentation of biopolymers of the extracellular matrix of the joint tissues.
AIM: To study the peculiarities of free radical oxidation and metabolic processes of cartilage and bone tissues in animals with a surgical model of PTOA of the knee joint.
MATERIALS AND METHODS: The study was conducted on 31 rats (11 intact animals and 20 animals with PTOA model). The metabolic processes of the connective tissue were evaluated by the changes in the content of biomarkers of the cartilage (hyaluronan, aggrecan) and bone (fibroblast growth factor-23, osteprotegerin, sclerostin, osteocalcin) tissues. The condition of the free radical oxidation processes was evaluated by the level of lipid hydroperoxides, and the activity of antioxidant system by the parameters of the total antioxidant and thiol statuses.
RESULTS: In rats with the PTOA model, an increase in cartilage tissue biopolymers aggrecan and hyaluronan (p < 0.001) was noted with a negative change in the marker of bone formation (a tendency to increase in the content of osteocalcin) and markers of regulation of bone homeostasis (increased fibroblast growth factor-23, p < 0.001), with a tendency to decrease in the content of osteoprotegerin and sclerostin, in comparison with intact animals of the control group. In parallel with this, an increase in lipid hydroperoxides (p < 0.01) in the systemic bloodstream was detected with a decrease in the thiol status index (p < 0.01) with preserved normal total antioxidant activity (p > 0.05).
CONCLUSION: The data of the conducted study evidences intensification of free radical oxidation and derangement of metabolic processes in the bone and cartilage tissues in animals with a surgical model of PTOA of the knee joint. A negative change in the metabolism of the bone tissue was manifested by the loss of balance of remodeling processes, and metabolic disorders in the cartilage tissue consisted in the destruction of its biopolymers in conditions of intensification of free radical oxidation processes and relative tension of the thiol system with the total antioxidant activity remaining within the physiological norm. The established facts are promising from the point of view of using the studied biomarkers both for the identification of pathogenetic triggers of PTOA of the knee joint, and for the determination of the direction of therapeutic measures.
model of posttraumatic osteoarthrosis / free radical oxidation / cartilage tissue / bone tissue
| [1] |
Golovach IYu, Yehudina YeD. Posttraumatic osteoarthritis: contemporary views of development, progression and therapeutic approaches. Polytrauma. 2019;(1):82–9. (In Russ). |
| [2] |
Головач И.Ю., Егудина Е.Д. Посттравматический остеоатрит: современные представления о развитии, прогрессировании и терапевтических подходах // Политравма. 2019. № 1. С. 82–89. |
| [3] |
Zakhvatov AN, Tarasova TV, Avanesov AM, et al. Correction of metabolic disorders of collagen in arthritis of posttraumatic genesis. The Journal of Scientific Articles «Health & Education Millennium». 2018;20(12):193–7. (In Russ). |
| [4] |
Захватов А.Н., Тарасова Т.В., Аванесов А.М., и др. Коррекция нарушений обмена коллагена при артрите посттравматического генеза // Журнал научных статей «Здоровье и образование в XXI веке». 2018. Т. 20, № 12. С. 193–197. |
| [5] |
Rees MD, Hawkins CL, Davies MJ, et al. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulfates. Biochem J. 2004;381(Pt1):175–84. doi: 10.1042/BJ20040148 |
| [6] |
Rees M.D., Hawkins C.L., Davies M.J., et al. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulfates // The Biochemical Journal. 2004. Vol. 381, Pt. 1. P. 175–184. doi: 10.1042/BJ20040148 |
| [7] |
Slesarenko NA, Shirokova EO. Reparative osseo and сhondrogenez in the conditions of induced osteoarthrosis in laboratory animals. Russian Veterinary Journal. Small Domestic and Wild Animals. 2012;(1):6–8. (In Russ). |
| [8] |
Слесаренко Н.А., Широкова Е.О. Репаративный остео- и хондрогенез в условиях индуцированного остеоартроза у лабораторных животных // Российский ветеринарный журнал. Мелкие домашние и дикие животные. 2012. № 1. С. 6–8. |
| [9] |
Shchelkunova EI, Voropaeva AA, Rusova TV, et al. The application of experimental modeling to the study of the osteoarthrosis pathogenesis (review). Sibirskij Nauchnyj Medicinskij Zhurnal. 2019;39(2):27–39. (In Russ). doi: 10.15372/SSMJ20190203 |
| [10] |
Щелкунова Е.И., Воропаева А.А., Русова Т.В., и др. Применение экспериментального моделирования при изучении патогенеза остеоартроза (обзор литературы) // Сибирский научный медицинский журнал. 2019. Т. 39, № 2. С. 27–39. doi: 10.15372/SSMJ20190203 |
| [11] |
Tawonsawatrik T, Stiwatananukulkit O, Himakhun W, et al. Comparison of pain behavior and osteoarthritis progression between anterior cruciate ligament transection and osteochondral injury in rat model. Bone Joint Res. 2018;7(3):244–251. doi: 10.1302/2046-3758.73.BJR-2017-0121.R2 |
| [12] |
Tawonsawatrik T., Stiwatananukulkit O., Himakhun W., et al. Comparison of pain behavior and osteoarthritis progression between anterior cruciate ligament transection and osteochondral injury in rat models // Bone & Joint Research. 2018. Vol. 7, No. 3. Р. 244–251. doi: 10.1302/2046-3758.73.BJR-2017-0121.R2 |
| [13] |
Dedukh NV. Aggrekan. Bol’. Sustavy. Pozvonochnik. 2012;(4):26–8. (In Russ). |
| [14] |
Дедух Н.В. Аггрекан // Боль. Суставы. Позвоночник. 2012. № 4 (8). С. 26–28. |
| [15] |
Kapuler O, Galeeva A, Selskaya B, et al. Hyaluronan: properties and biological role. Vrach. 2015;(2):25–7. (In Russ). |
| [16] |
Капулер О., Галеева А., Сельская Б., и др. Гиалуронан: свойства и биологическая роль // Врач. 2015. № 2. С. 25–27. |
| [17] |
Shimura Y, Kurosawa H, Kaneko H, et al. Serum hyaluronan levels are associated with disability for activity of daily living in patients with knee osteoarthritis regardless of the radiographic severity of the disease. Osteoarthritis and Cartilage. 2018;26(Suppl 1):S354–5. doi: 10.1016/j.joca.2018.02.702 |
| [18] |
Shimura Y., Kurosawa H., Kaneko H., et al. Serum hyaluronan levels are associated with disability for activity of daily living in patients with knee osteoarthritis regardless of the radiographic severity of the disease // Osteoarthritis and Cartilage. 2018. Vol. 26, Suppl. 1. P. S354–S355. doi: 10.1016/j.joca.2018.02.702 |
| [19] |
Kabalyk MA. Biomarkers of subchondral bone remodeling in osteoarthritis. Pacific Medical Journal. 2017;(1):36–41. (In Russ). doi: 10.17238/PmJ1609-1175.2017.1.37-41 |
| [20] |
Кабалык М.А. Биомаркеры и участники ремоделирования субхондральной кости при остеоартрозе // Тихоокеанский медицинский журнал. 2017. № 1. С. 36–41. doi: 10.17238/PmJ1609-1175.2017.1.37-41 |
| [21] |
Verbovoy AF, Tsanava IA, Mitroshina EV, et al. Osteoprotegerin is a new marker of cardiovascular diseases. Therapeutic Archive. 2017;(4):91–4. (In Russ). doi: 10.17116/terarkh201789491-94 |
| [22] |
Вербовой А.Ф., Цанава И.А., Митрошина Е.В., и др. Остеопротегерин — новый маркер сердечно-сосудистых заболеваний // Терапевтический архив. 2017. № 4. С. 91–94. doi: 10.17116/terarkh201789491-94 |
| [23] |
Kargina IG. Complex osteoprotegerin-calcitonini in the system of osteogenesis in rickets. Modern Problems of Science and Education. 2019;(5):103. Available at: https://science-education.ru/ru/article/view?id=29214. Accessed: 2023 January 13. (In Russ). |
| [24] |
Каргина И.Г. Комплекс остеопротегерин-кальцитонин в системе остеогенеза при рахите // Современные проблемы науки и образования. 2019. № 5. Доступно по: https://science-education.ru/ru/article/view?id=29214. Ссылка активна на 13.01.2023. |
| [25] |
Karlovich NV. Fibroblast growth factor 23 (FGF 23) is a novel hormone, regulating mineral homeostasis. Lechebnoe Delo. 2017;(4):61–7. (In Russ). |
| [26] |
Карлович Н.В. Фактор роста фибробластов 23 (FGF 23) — новый гормон, регулирующий минеральный обмен // Лечебное дело: научно-практический терапевтический журнал. 2017. № 4 (56). С. 61–67. |
| [27] |
Grebennikova TA, Belaya ZhE, Rozhinskaya LYa, et al. The canonical Wnt/β-catenin pathway: From the history of its discovery to clinical application. Therapeutic Archive. 2016;88(10):74–81. (In Russ). doi: 10.17116/terarkh201688674-81 |
| [28] |
Гребенникова T.А., Белая Ж.Е., Рожинская Л.Я., и др. Канонический сигнальный путь Wnt/β-катенин: от истории открытия до клинического применения // Терапевтический архив. 2016. Т. 88, № 10. С. 74–81. doi: 10.17116/terarkh201688674-81 |
| [29] |
Zubavlenko RА, Belova SV, Gladkova ЕV, et al. Morphological changes in articular cartilage and free-radical lipid peroxidation in rats with posttraumatic osteoarthrosis. Bulletin of Experimental Biology and Medicine. 2021;172(8):248–52. (In Russ). doi: 10.47056/0365-9615-2021-172-8-248-252 |
| [30] |
Зубавленко Р.А., Белова С.В., Гладкова Е.В., и др. Морфологические изменения суставного хряща и процессы перекисного окисления липидов у крыс с посттравматическим остеоартрозом // Бюллетень экспериментальной биологии и медицины. 2021. Т. 172, № 8. С. 248–252. doi: 10.47056/0365-9615-2021-172-8-248-252 |
| [31] |
Martusevich АА, Peretyagin SP, Martusevich АК, et al. Molecular and cell mechanisms of singlet oxygen effect on biosystems. Modern Technologies in Medicine. 2012;(2):128–34. (In Russ). |
| [32] |
Мартусевич А.А., Перетягин С.П., Мартусевич А.К. Молекулярные и клеточные механизмы действия синглетного кислорода на биосистемы // Современные технологии в медицине. 2012. № 2. С. 128–134. |
| [33] |
Yusupov M, Van der Paal J, Neyts EC, et al. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes. Biochim Biophys Acta Gen Subj. 2017;1861(4):839–47. doi: 10.1016/j.bbagen.2017.01.030 |
| [34] |
Yusupov M., Van der Paal J., Neyts E.C., et al. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes // Biochimica et Biophysica Acta. General Subject. 2017. Vol. 1861, No. 4. P. 839–847. doi: 10.1016/j.bbagen.2017.01.030 |
| [35] |
Zachvatov AN, Belyaev AN, Atkina NA. Correction processes of free radical oxidation and metabolism of collagen of articular cartilage in experimental knee joint injury. The Department of Traumatology and Orthopedics. 2016;(3):45–9. (In Russ). |
| [36] |
Захватов А.Н., Беляев А.Н., Аткина Н.А. Коррекция нарушений процессов свободно-радикального окисления и метаболизма коллагена суставного хряща при экспериментальной травме коленного сустава // Кафедра травматологии и ортопедии. 2016. № 3 (19). С. 45–49. |
Eco-Vector
/
| 〈 |
|
〉 |