Voluntary Consumption of Sodium Glutamate Solution as a Factor of Depression-Like Behavior in Adult Rats: an Experimental Study

Daniil O. Parot'kin , Natal'ya G. Bogdanova , Galina A. Nazarova , Sergey K. Sudakov

I.P. Pavlov Russian Medical Biological Herald ›› 2023, Vol. 31 ›› Issue (2) : 169 -176.

PDF (665KB)
I.P. Pavlov Russian Medical Biological Herald ›› 2023, Vol. 31 ›› Issue (2) : 169 -176. DOI: 10.17816/PAVLOVJ109411
Original study
research-article

Voluntary Consumption of Sodium Glutamate Solution as a Factor of Depression-Like Behavior in Adult Rats: an Experimental Study

Author information +
History +
PDF (665KB)

Abstract

INTRODUCTION: Use of sodium glutamate solution with food is a widely spread practice. The glutamate-ergic system has been shown to directly participate in the mechanisms of depression, however, up to the moment, no data have been found to evidence that use of sodium glutamate causes depression.

AIM: To study the effect of intake of sodium glutamate on the formation of depression-like behavior in male rats.

MATERIALS AND METHODS: Formation of depression-like behavior was evaluated in male rats of Wistar line with 230 g–250 g weight at the beginning of the experiment in the situation of ‘inescapable swimming’ according to the method of R. D. Porsolt, and of ‘hanging by the tail’ according to T. A. Voronina. In the course of the experiment, the rats of the experimental group consumed 1.1% sodium glutamate solution daily for 30 days, the control animals drank water. During the experiment, the rats were kept in individual cages and had free access to water. The animals of the control group (n = 7) had only water in the drinking bowls. The animals of the experimental group (n = 7) were given water in one drinking bowl and 60 mМ (1.1%) sodium glutamate solution (Henan Lotus Flower Gourmet Powder Cо., LTD, China) in the other.

RESULTS: Consumption of 1.1% sodium glutamate solution for 30 days led to reduction of the time of active movements and to increase in the number of periods of immobilization in animals in both tests. Besides, in the tests for depression-like behavior of animals, increased rhythmologic index of depression was found in the group of rats receiving sodium glutamate solution.

CONCLUSION: Based on the results of study, it was found that chronic voluntary consumption of 60 mM (1.1%) sodium glutamate solution for 30 days provokes the formation of depression-like behavior in rats.

Keywords

depression / sodium glutamate / Porsolt test / hanging-by the tail-test / rats

Cite this article

Download citation ▾
Daniil O. Parot'kin, Natal'ya G. Bogdanova, Galina A. Nazarova, Sergey K. Sudakov. Voluntary Consumption of Sodium Glutamate Solution as a Factor of Depression-Like Behavior in Adult Rats: an Experimental Study. I.P. Pavlov Russian Medical Biological Herald, 2023, 31(2): 169-176 DOI:10.17816/PAVLOVJ109411

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858. doi: 10.1016/S0140-6736(18)32279-7

[2]

GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 // Lancet. 2018. Vol. 392, No. 10159. P. 1789–1858. doi: 10.1016/0140-6736(18)32279-7

[3]

World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates [Internet]. Available at: https://www.who.int/publications/i/item/depression-global-health-estimates. Accessed: 2022 October 19.

[4]

World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates [Internet]. Доступно по: https://www.who.int/publications/i/item/depression-global-health-estimates. Ссылка активна на 19.10.2022.

[5]

World Health Organization. Depressive disorder (depression) [Internet]. Available at: https://www.who.int/news-room/fact-sheets/detail/depression. Accessed: 2022 October 19.

[6]

World Health Organization. Depressive disorder (depression) [Internet]. Доступно по: https://www.who.int/news-room/fact-sheets/detail/depression. Ссылка активна на 19.10.2022.

[7]

Jaso BA, Niciu MJ, Iadarola ND, et al. Therapeutic Modulation of Glutamate Receptors in Major Depressive Disorder. Curr Neuropharmacol. 2017;15(1):57–70. doi: 10.2174/1570159x14666160321123221

[8]

Jaso B.A., Niciu M.J., Iadarola N.D., et al. Therapeutic Modulation of Glutamate Receptors in Major Depressive Disorder // Current Neuropharmacology. 2017. Vol. 15, No. 1. P. 57–70. doi: 10.2174/1570159x14666160321123221

[9]

Hashimoto K, Sawa A, Iyo M. Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry. 2007;62(11):1310–6. doi: 10.1016/j.biopsych.2007.03.017

[10]

Hashimoto K., Sawa A., Iyo M. Increased levels of glutamate in brains from patients with mood disorders // Biological Psychiatry. 2007. Vol. 62, No. 11. P. 1310–1316. doi: 10.1016/j.biopsych.2007.03.017

[11]

Küçükibrahimoğlu E, Saygin MZ, Calişkan M, et al. The change in plasma GABA, glutamine, and glutamate levels in fluoxetine- or S-citalopram-treated female patients with major depression. Eur J Clin Pharmacol. 2009;65(6):571–7. doi: 10.1007/s00228-009-0650-7

[12]

Küçükibrahimoğlu E., Saygin M.Z., Calişkan M., et al. The change in plasma GABA, glutamine, and glutamate levels in fluoxetine- or S-citalopram-treated female patients with major depression // European Journal of Clinical Pharmacology. 2009. Vol. 65, No. 6. P. 571–577. doi: 10.1007/s00228-009-0650-7

[13]

Mazzoli R, Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front Microbiol. 2016;7:1934. doi: 10.3389/fmicb.2016.01934

[14]

Mazzoli R., Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling // Frontiers in Microbiology. 2016. Vol. 7. P. 1934. doi: 10.3389/fmicb.2016.01934

[15]

Liang S, Wu X, Hu X, et al. Recognizing Depression from the Microbio-ta-Gut-Brain Axis. Int J Mol Sci. 2018;19(6):1592. doi: 10.3390/ijms19061592

[16]

Liang S., Wu X., Hu X., et al. Recognizing Depression from the Microbiota⁻Gut⁻Brain Axis // International Journal of Molecular Sciences. 2018. Vol. 19, No. 6. P. 1592. doi: 10.3390/ijms19061592

[17]

Kurihara K. Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor. BioMed Res Int. 2015;2015:189402. doi: 10.1155/2015/189402

[18]

Kurihara K. Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor // BioMed Research International. 2015. Vol. 2015. P. 189402. doi: 10.1155/2015/189402

[19]

Sudakov SK, Bogdanova NG, Alekseeva EV, et al. Endogenous opioid dependence after intermittent use of glucose, sodium chloride, and monosodium glutamate solutions. Food Sci Nutr. 2019;7(9):2842–6. doi: 10.1002/fsn3.1120

[20]

Sudakov S.K., Bogdanova N.G., Alekseeva E.V., et al. Endogenous opioid dependence after intermittent use of glucose, sodium chloride, and monosodium glutamate solutions // Food Science & Nutrition. 2019. Vol. 7, No. 9. P. 2842–2846. doi: 10.1002/fsn3.1120

[21]

Sudakov SK, Bogdanova NG, Alekseeva EV, et al. The Development of Pathological Dependence after Intermittent Use of Sodium Glutamate, but Not Sucrose or Sodium Chloride Solutions. Bull Exp Biol Med. 2020;169(3):324–7. doi: 10.1007/s10517-020-04879-6

[22]

Sudakov S.K., Bogdanova N.G., Alekseeva E.V., et al. The Development of Pathological Dependence after Intermittent Use of Sodium Glutamate, but Not Sucrose or Sodium Chloride Solutions // Bulletin of Experimental Biology and Medicine. 2020. Vol. 169, No. 3. P. 324–327. doi: 10.1007/s10517-020-04879-6

[23]

Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266(5604):730–2. doi: 10.1038/266730a0

[24]

Porsolt R.D., Le Pichon M., Jalfre M. Depression: a new animal model sensitive to antidepressant treatments // Nature. 1977. Vol. 266, No. 5604. P. 730–732. doi: 10.1038/266730a0

[25]

Shchetinin EV, Baturin VA, Arushanian EB. A biorhythmologic approach to evaluating forced swimming as an experimental model of a ‘depressive’ state. Zhurnal Vysshei Nervnoi Deiatelnosti imeni I P Pavlova. 1989;39(5):958–64. (In Russ).

[26]

Щетинин Е.В., Батурин В.А., Арушанян Э.Б. Биоритмологический подход к оценке принудительного плавания как экспериментальной модели «депрессивного» состояния // Журнал высшей нервной деятельности им. И.П. Павлова. 1989. Т. 39, № 5. С. 958–964.

[27]

Garibova TL, Kraineva VA, Voronina TA. Animal models of depression. Farmakokinetika i Farmakodinamika. 2017;(2):14–9. (In Russ).

[28]

Гарибова Т.Л., Крайнева В.А., Воронина Т.А. Поведенческие экспериментальные модели депрессии // Фармакокинетика и фармакодинамика. 2017. № 2. С. 14–19.

[29]

Biney RP, Djankpa FT, Osei SA, et al. Effects of in utero exposure to monosodium glutamate on locomotion, anxiety, depression, memory and KCC2 expression in offspring. Int J Dev Neurosci. 2022;82(1):50–62. doi: 10.1002/jdn.10158

[30]

Biney R.P., Djankpa F.T., Osei S.A., et al. Effects of in utero exposure to monosodium glutamate on locomotion, anxiety, depression, memory and KCC2 expression in offspring // International Journal of Developmental Neuroscience. 2022. Vol. 82, No. 1. P. 50–62. doi: 10.1002/jdn.10158

[31]

Zhu W, Yang F, Cai X, et al. Role of glucocorticoid receptor phosphorylation-mediated synaptic plasticity in anxiogenic and depressive behaviors induced by monosodium glutamate. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(1):151–64. doi: 10.1007/s00210-020-01845-x

[32]

Zhu W., Yang F., Cai X., et al. Role of glucocorticoid receptor phosphorylation-mediated synaptic plasticity in anxiogenic and depressive behaviors induced by monosodium glutamate // Naunyn-Schmiedeberg's Archives of Pharmacology. 2021. Vol. 394, No. 1. P. 151–164. doi: 10.1007/s00210-020-01845-x

[33]

Li J, Sha L, Xu Q. An early increase in glutamate is critical for the development of depression-like behavior in a chronic restraint stress (CRS) model. Brain Res Bull. 2020;162:59–66. doi: 10.1016/j.brain resbull.2020.05.013

[34]

Li J., Sha L., Xu Q. An early increase in glutamate is critical for the development of depression-like behavior in a chronic restraint stress (CRS) model // Brain Research Bulletin. 2020. Vol. 162. P. 59–66. doi: 10.1016/j.brainresbull.2020.05.013

[35]

Adejoke YO, Olakunle JO. Glutamate and depression: Reflecting a deepening knowledge of the gut and brain effects of a ubiquitous molecule. World J Psychiatry. 2021;11(7):297–315. doi: 10.5498/wjp. v11.i7.297

[36]

Adejoke Y.O., Olakunle J.O. Glutamate and depression: Reflecting a deepening knowledge of the gut and brain effects of a ubiquitous molecule // World Journal of Psychiatry. 2021. Vol. 11, No. 7. P. 297–315. doi: 10.5498/wjp. v11.i7.297

[37]

Torii K, Uneyama H, Nakamura E. Physiological roles of dietary glutamate signaling via gut–brain axis due to efficient digestion and absorption. J Gastroenterol. 2013;48(4):442–51. doi: 10.1007/s00535-013-0778-1

[38]

Torii K., Uneyama H., Nakamura E. Physiological roles of dietary glutamate signaling via gut–brain axis due to efficient digestion and absorption // Journal of Gastroenterology. 2013. Vol. 48, No. 4. P. 442–451. doi: 10.1007/s00535-013-0778-1

[39]

Onaolapo OJ, Onaolapo AY, Olowe AO. The neurobehavioral implications of the brain and microbiota interaction. Front Biosci (Landmark Ed). 2020;25(2):363–97. doi: 10.2741/4810

[40]

Onaolapo O.J., Onaolapo A.Y., Olowe A.O. The neurobehavioral implications of the brain and microbiota interaction // Frontiers in Bioscience (Landmark Edition). 2020. Vol. 25, No. 2. P. 363–397. doi: 10.2741/4810

[41]

Schousboe A, Scafidi S, Bak LK, et al. Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol. 2014;11:13–30. doi: 10.1007/978-3-319-08894-5_2

[42]

Schousboe A., Scafidi S., Bak L.K., et al. Glutamate metabolism in the brain focusing on astrocytes // Advances in Neurobiology. 2014. Vol. 11. P. 13–30. doi: 10.1007/978-3-319-08894-5_2

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (665KB)

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/