Intracellular Location and Function of Nuclear Factor of Erythroid Origin 2 (Nrf2) in Modeling Oxidative Stress in vitro
Yuliya V. Abalenikhina , Pelageya D. Erokhina , Adamiana A. Seidkuliyeva , Ol’ga A. Zav’yalova , Aleksey V. Shchul’kin , Elena N. Yakusheva
I.P. Pavlov Russian Medical Biological Herald ›› 2022, Vol. 30 ›› Issue (3) : 296 -304.
Intracellular Location and Function of Nuclear Factor of Erythroid Origin 2 (Nrf2) in Modeling Oxidative Stress in vitro
INTRODUCTION: Nuclear factor E2-related factor 2 (Nrf2) is a member of cap‘n’collar (CNC) family of subfamily of leucine zipper transcription factors that regulates cell protection against toxic substances and oxidants.
AIM: To determine location, mechanism of activation and role of Nrf2 in conditions of oxidative stress in vitro.
MATERIALS AND METHODS: The study was performed on human colon adenocarcinoma cell line (Caco-2). Oxidative stress (OS) was modeled by adding hydrogen peroxide (Н2О2) at concentrations of 0.1 µМ–100 µМ to the nutritive medium and incubation for 24 and 72 hours. In assessment of Nrf2 function, its inhibitor ― AEM1 ― was added to cells at a concentration of 5 µМ. The extent of OS development was determined using photometric methods by the concentration of protein SH-groups and carbonyl derivatives of protein, and the activity of superoxide dismutase (SOD). Viability of cells was assessed by the results of cytotoxic test (MTT assay), the amount of Nrf2 in the cytoplasm and nucleus was determined by heterogenous ELISA method.
RESULTS: Incubation of Caco-2 cells with Н2О2 resulted in decrease in the level of protein SH-groups and increase in the concentration of carbonyl derivatives of protein. In incubation with H2O2 at concentrations of 0.1 µМ–10 µМ for 24 hours and 10 µМ for 72 hours, the activity of SOD increased. At concentrations of Н2О2 of 50 µМ and 100 µМ (24 hour and 72 hour), SOD activity and viability of cells decreased. Exposure to Н2О2 led to translocation of Nrf2 from the cytoplasm into nucleus. Direct correlation dependence was revealed between concentration of protein SH-groups and the amount of Nrf2 in the cytoplasm in incubation with H2O2 for 24 hour (r = 0.44, р = 0.03), 72 hour (r = 0.34, р = 0.05). The amount of Nrf2 in the nucleus positively correlated with SOD activity in the cytoplasm on exposure to H2O2 for 24 hour (r = 0.77, р = 0.0001) and 72 hour (r = 0.36, р = 0.06). In inhibition of Nrf2 in conditions of exposure to H2O2, the viability of cells decreased to a larger extent.
CONCLUSION: Hydrogen peroxide induces the nuclear translocation of Nrf2, which promotes activation of antioxidant enzyme SOD and preserves viability of cells of OS conditions in vitro.
nuclear factor E2-related factor 2 Nrf2 / superoxide dismutase / oxidative stress / Caco-2 line cells
| [1] |
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews. Molecular Cell Biology. 2020;21(7):363–83. doi: 10.1038/s41580-020-0230-3 |
| [2] |
Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents // Nature Reviews. Molecular Cell Biology. 2020. Vol. 21, № 7. P. 363–383. doi: 10.1038/s41580-020-0230-3 |
| [3] |
Jakubczyk K, Dec K, Kałduńska J, et al. Reactive oxygen species ― sources, functions, oxidative damage. Polski Merkuriusz Lekarski. 2020;48(284):124–7. |
| [4] |
Jakubczyk K., Dec K., Kałduńska J., et al. Reactive oxygen species ― sources, functions, oxidative damage // Polski Merkuriusz Lekarski. 2020. Vol. 48, № 284. P. 124–127. |
| [5] |
Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NFE2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(21):9926–30. doi: 10.1073/pnas.91.21.9926 |
| [6] |
Moi P., Chan K., Asunis I., et al. Isolation of NF-E2-related factor 2 (Nrf2), a NFE2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region // Proceedings of the National Academy of Sciences of the United States of America. 1994. Vol. 91, № 21. P. 9926–9930. doi: 10.1073/pnas.91.21.9926 |
| [7] |
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology. 2013;53:401–26. doi: 10.1146/annurev-pharmtox-011112-140320 |
| [8] |
Ma Q. Role of nrf2 in oxidative stress and toxicity // Annual Review of Pharmacology and Toxicology. 2013. Vol. 53. P. 401–426. doi: 10.1146/annurev-pharmtox-011112-140320 |
| [9] |
Casalino E, Calzaretti G, Landriscina M, et al. The Nrf2 transcription factor contributes to the induction of alpha-class GST isoenzymes in liver of acute cadmium or manganese intoxicated rats: comparison with the toxic effect on NAD(P)H:quinone reductase. Toxicology. 2007;237(1–3):24–34. doi: 10.1016/j.tox.2007.04.020 |
| [10] |
Casalino E., Calzaretti G., Landriscina M., et al. The Nrf2 transcription factor contributes to the induction of alpha-class GST isoenzymes in liver of acute cadmium or manganese intoxicated rats: comparison with the toxic effect on NAD(P)H:quinone reductase // Toxicology. 2007. Vol. 237, № 1–3. P. 24–34. doi: 10.1016/j.tox.2007.04.020 |
| [11] |
Ekuban FA, Zong C, Takikawa M, et al. Genetic ablation of Nrf2 exacerbates neurotoxic effects of acrylamide in mice. Toxicology. 2021;456:152785. doi: 10.1016/j.tox.2021.152785 |
| [12] |
Ekuban F.A., Zong C., Takikawa M., et al. Genetic ablation of Nrf2 exacerbates neurotoxic effects of acrylamide in mice // Toxicology. 2021. Vol. 456. P. 152785. doi: 10.1016/j.tox.2021.152785 |
| [13] |
Kim EN, Lim JH, Kim MY, et al. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging (Albany NY). 2018;10(1): 83–99. doi: 10.18632/aging.101361 |
| [14] |
Kim E.N., Lim J.H., Kim M.Y., et al. Resveratrol, an Nrf2 activator, ameliorates aging–related progressive renal injury // Aging (Albany NY). 2018. Vol. 10, № 1. P. 83–99. doi: 10.18632/aging.101361 |
| [15] |
Lin X, Bai D, Wei Z, et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One. 2019;14(5):e0216711. doi: 10.1371/journal.pone.0216711 |
| [16] |
Lin X., Bai D., Wei Z., et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway // PLoS One. 2019. Vol. 14, № 5. P. e0216711. doi: 10.1371/journal.pone.0216711 |
| [17] |
Sambuy Y, De Angelis I, Ranaldi G, et al. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biology and Toxicology. 2005;21(1):1–26. doi: 10.1007/s10565-005-0085-6 |
| [18] |
Sambuy Y., De Angelis I., Ranaldi G., et al. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics // Cell Biology and Toxicology. 2005. Vol. 21, № 1. P. 1–26. doi: 10.1007/s10565-005-0085-6 |
| [19] |
Bollong MJ, Yun H, Sherwood L, et al. A small molecule inhibits deregulated NRF2 transcriptional activity in cancer. ACS Chemical Biology. 2015;10(10):2193–8. doi: 10.1021/acschembio.5b00448 |
| [20] |
Bollong M.J., Yun H., Sherwood L., et al. A small molecule inhibits deregulated NRF2 transcriptional activity in cancer // ACS Chemical Biology. 2015. Vol. 10, № 10. P. 2193–2198. doi: 10.1021/acschembio.5b00448 |
| [21] |
Kalinin RE, Suchkov IA, Mzhavanadze ND, et al. Comparison of cytotoxicity of vascular prostheses in vitro. I.P. Pavlov Russian Medical Biological Herald. 2020;28(2):183–92. (In Russ). doi: 10.23888/PAVLOVJ2020282183-192 |
| [22] |
Калинин Р.Е., Сучков И.А., Мжаванадзе Н.Д., и др. Сравнение цитотоксичности синтетических сосудистых протезов in vitro // Российский медико-биологический вестник имени академика И.П. Павлова. 2020. Т. 28, № 2. С. 183–192. doi: 10.23888/PAVLOVJ2020282183-192 |
| [23] |
Weber D, Davies MJ, Grune T. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: focus on sample preparation and derivatization conditions. Redox Biology. 2015;5:367–80. doi: 10.1016/j.redox.2015.06.005 |
| [24] |
Weber D., Davies M.J., Grune T. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: focus on sample preparation and derivatization conditions // Redox Biology. 2015. Vol. 5. P. 367–380. doi: 10.1016/j.redox.2015.06.005 |
| [25] |
Boschi–Muller S, Azza S, Sanglier–Cianferani S, et al. A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli. The Journal of Biological Chemistry. 2000;275(46):35908–13. doi: 10.1074/jbc.M006137200 |
| [26] |
Boschi–Muller S., Azza S., Sanglier–Cianferani S., et al. A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli // The Journal of Biological Chemistry. 2000. Vol. 275, № 46. P. 35908–35913. doi: 10.1074/jbc.M006137200 |
| [27] |
Ellman GL. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics. 1959;82(1):70–7. doi: 10.1016/0003-9861(59)90090-6 |
| [28] |
Ellman G.L. Tissue sulfhydryl groups // Archives of Biochemistry and Biophysics. 1959. Vol. 82, № 1. P. 70–77. doi: 10.1016/0003-9861(59)90090-6 |
| [29] |
Kostiuk VA, Potapovich AI, Kovaleva ZhV. A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation. Voprosy Meditsinskoi Khimii. 1990;36(2):88–91. (In Russ). |
| [30] |
Костюк В.А., Потапович А.И., Ковалева Ж.В. Простой и чувствительный метод определения активности супероксиддисмутазы, основанный на реакции окисления кверцитина // Вопросы медицинской химии. 1990. Т. 36, № 2. С. 88–91. |
| [31] |
Matveeva EL, Spirkina ES, Chegurov OK, et al. Lipid peroxidation profile of synovial fluid in patients with gonarthrosis accompanied by defects of articular surface. Science of the young (Eruditio Juvenium). 2020;8(1):70–5. (In Russ). doi: 10.23888/HMJ20208170-75 |
| [32] |
Матвеева Е.Л., Спиркина Е.С., Чегуров О.К., и др. Профиль липопероксидации в синовиальной жидкости суставов у пациентов с гонартрозом, сопровождающимся дефектами суставных поверхностей // Наука молодых (Eruditio Juvenium). 2020. Т. 8, № 1. С. 70–75. doi: 10.23888/HMJ20208170-75 |
| [33] |
Radak Z, Zhao Z, Goto S, et al. Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA. Molecular Aspects of Medicine. 2011;32(4–6):305–15. doi: 10.1016/j.mam.2011.10.010 |
| [34] |
Radak Z., Zhao Z., Goto S., et al. Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA // Molecular Aspects of Medicine. 2011. Vol. 32, № 4–6. P. 305–315. doi: 10.1016/j.mam.2011.10.010 |
| [35] |
Kosmachevskaya OV, Shumayev KB, Topunov AF. Karbonil’nyy stress: ot bakteriy do cheloveka. Petrozavodsk: IP Markov N.A.; 2018. (In Russ). |
| [36] |
Космачевская О.В., Шумаев К.Б., Топунов А.Ф. Карбонильный стресс: от бактерий до человека. Петрозаводск: ИП Марков Н.А.; 2018. |
| [37] |
Kang KA, Hyun JW. Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance. Toxicological Research. 2017;33(1):1–5. doi: 10.5487/TR.2017.33.1.001 |
| [38] |
Kang K.A., Hyun J.W. Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance // Toxicological Research. 2017. Vol. 33, № 1. P. 1–5. doi: 10.5487/TR.2017.33.1.001 |
| [39] |
Wen Zh, Liu W, Li X, et al. A Protective Role of the NRF24 Keap1 Pathway in Maintaining Intestinal Barrier Function. Oxidative Medicine and Cellular Longevity. 2019;2019:e1759149. doi: 10.1155/2019/1759149 |
| [40] |
Wen Zh., Liu W., Li X., et al. A Protective Role of the NRF2-Keap1 Pathway in Maintaining Intestinal Barrier Function // Oxidative Medicine and Cellular Longevity. 2019. Vol. 2019. P. e1759149. doi: 10.1155/2019/1759149 |
Abalenikhina Y.V., Erokhina P.D., Seidkuliyeva A.A., Zav’yalova O.A., Shchul’kin A.V., Yakusheva E.N.
/
| 〈 |
|
〉 |