Analysis and Evaluation of Modern Approaches to Development of Medical Drugs Using Micro- and Nanotechnologies
Evgeniy V. Raguzin , Mikhail A. Yudin , Daniil D. Glushenko , Nikolay G. Vengerovich , Ol’ga G. Raguzina , Tat’yana B. Pechurina , Timur V. Shefer , Igor’ M. Ivanov
I.P. Pavlov Russian Medical Biological Herald ›› 2022, Vol. 30 ›› Issue (3) : 397 -410.
Analysis and Evaluation of Modern Approaches to Development of Medical Drugs Using Micro- and Nanotechnologies
INTRODUCTION: TDespite the achievements of the modern medicine, use of some medical drugs (MDs) is associated with both the absence of a significant therapeutic effect due to peculiarities of the physico-chemical interaction in the internal environment of an organism, and with the adverse effect on organs and tissues. The advanced technologies of creation of micro- and nanoparticles will permit to improve pharmacokinetics and pharmacodynamics of the drug, its bioavailability and solubility, the ability of crossing blood-brain barriers, and to reduce undesirable systemic effects. MDs using micro- and nanoparticles, have a targeted effect on the focus of pathological lesion. An important additional advantage is a possibility of using micro- and nanoparticles in development of long-acting MDs. The main active substances immobilized to micro- and nanoparticles, open up new prospects for effective treatment of different pathological conditions (neoplasms, diseases of cardiovascular and central nervous system, inflammatory processes, wounds), and for realization of new imaging capabilities in foci of a pathological process, which is especially important in diagnostic procedures.
CONCLUSION: The article presents a summary of the ideas of methods of micro- and nanoencapsulation, and assessments of the prospects for the development of drugs for the correction of pathological conditions using innovative technologies.
targeted delivery of medical drugs / nanotechnologies / microencapsulation / oncology / sorption
| [1] |
Ashrafizadeh M, Mirzaei S, Gholami MH, et al. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydrate Polymers. 2021;272:118491. doi: 10.1016/j.carbpol.2021.118491 |
| [2] |
Ashrafizadeh M., Mirzaei S., Gholami M.H., et al. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression // Carbohydrate Polymers. 2021. Vol. 272. P. 118491. doi: 10.1016/j.carbpol.2021.118491 |
| [3] |
Press AT, Babic P, Hoffmann B, et al. Targeted delivery of a phosphoinositide 3-kinase γ inhibitor to restore organ function in sepsis. EMBO Molecular Medicine. 2021;13(10):14436. doi: 10.15252/emmm.202114436 |
| [4] |
Press A.T., Babic P., Hoffmann B., et al. Targeted delivery of a phosphoinositide 3-kinase γ inhibitor to restore organ function in sepsis // EMBO Molecular Medicine. 2021. Vol. 13, № 10. P. 14436. doi: 10.15252/emmm.202114436 |
| [5] |
Kumari P, Meena A. Application of enzyme-mediated cellulose nanofibers from lemongrass waste for the controlled release of anticancer drugs. Environmental Science and Pollution Research. 2021;28(34):46343–55 doi: 10.1007/s11356-020-08358-3 |
| [6] |
Kumari P., Meena A. Application of enzyme-mediated cellulose nanofibers from lemongrass waste for the controlled release of anticancer drugs // Environmental Science and Pollution Research. 2021. Vol. 28, № 34. P. 46343–46355. doi: 10.1007/s11356-020-08358-3 |
| [7] |
Solhjoo A, Sobhani Z, Sufali A, et al. Exploring pH dependent delivery of 5-fluorouracil from functionalized multi-walled carbon nanotubes. Colloids and Surfaces. B: Biointerfaces. 2021;205:111823. doi: 10.1016/j.colsurfb.2021.111823 |
| [8] |
Solhjoo A., Sobhani Z., Sufali A., et al. Exploring pH dependent delivery of 5-fluorouracil from functionalized multi-walled carbon nanotubes // Colloids and Surface. B: Biointerfaces. 2021. Vol. 205. P. 111823. doi: 10.1016/j.colsurfb.2021.111823 |
| [9] |
Komedchikova EN, Shipunova VO, Deyev SM. Kombinirovannoye vozdeystviye biosovmestimymi, biodegradiruyemymi adresnymi konstruktsiyami kak effektivnyy metod onkoteranostiki. In: Perspektivnyye napravleniya fiziko-khimicheskoy biologii i biotekhnologii; Moscow, 10–13 February 2020. Moscow; 2020. P. 132. (In Russ). |
| [10] |
Комедчикова Е.Н., Шипунова В.О., Деев С.М. Комбинированное воздействие биосовместимыми, биодеградируемыми адресными конструкциями как эффективный метод онкотераностики. В сб.: Перспективные направления физико-химической биологии и биотехнологии; Москва, 10–13 февраля 2020 г. М.; 2020. С. 132. |
| [11] |
Mainini F, Bonizzi A, Sevieri M, et al. Protein–Based Nanoparticles for the Imaging and Treatment of Solid Tumors: The Case of Ferritin Nanocages, a Narrative Review. Pharmaceutics. 2021;13(12):2000. doi: 10.3390/pharmaceutics13122000 |
| [12] |
Mainini F., Bonizzi A., Sevieri M., et al. Protein–Based Nanoparticles for the Imaging and Treatment of Solid Tumors: The Case of Ferritin Nanocages, a Narrative Review // Pharmaceutics. 2021. Vol. 13, № 12. P. 2000. doi: 10.3390/pharmaceutics13122000 |
| [13] |
Hornok V. Serum Albumin Nanoparticles: Problems and Prospects. Polymers. 2021;13(21):3759. doi: 10.3390/polym13213759 |
| [14] |
Hornok V. Serum Albumin Nanoparticles: Problems and Prospects // Polymers. 2021. Vol. 13, № 21. P. 3759. doi: 10.3390/polym13213759 |
| [15] |
Bojat I, Oganesyan EA, Balabanyan VYu, et al. Dosage forms of paclitaxel. Russian Journal of Biotherapy. 2009;8(3):37–44. (In Russ). |
| [16] |
Боят И., Оганесян Е.А., Балабаньян В.Ю., и др. Лекарственные формы паклитаксела // Российский биотерапевтический журнал. 2009. Т. 8, № 3. С. 37–44. |
| [17] |
Priyanka M, Samipta S, Nidhi M, et al. Chapter 20: Albumin–based nanomaterials in drug delivery and biomedical applications. In: Bera H, Hossain CM, Saha S, editors. Biopolymer–Based Nanomaterials in Drug Delivery and Biomedical Applications. Elsiver; 2021. P. 465–96. doi: 10.1016/B978-0-12-820874-8.00012-9 |
| [18] |
Priyanka M., Samipta S., Nidhi M., et al. Chapter 20: Albumin–based nanomaterials in drug delivery and biomedical applications. In: Bera H., Hossain C.M., Saha S., editors. Biopolymer–Based Nanomaterials in Drug Delivery and Biomedical Applications. Elsiver; 2021. P. 465–496. doi: 10.1016/B978-0-12-820874-8.00012-9 |
| [19] |
Thakare S, Shaikh A, Bodas D, et al. Application of dendrimer-based nanosensors in immunodiagnosis. Colloids and Surfaces. B: Biointerfaces. 2022;209(2):112174. doi: 10.1016/j.colsurfb.2021.112174 |
| [20] |
Thakare S., Shaikh A., Bodas D., et al. Application of dendrimer–based nanosensors in immunodiagnosis // Colloids and Surfaces. B: Biointerfaces. 2022. Vol. 209, Pt. 2. P. 112174. doi: 10.1016/j.colsurfb.2021.112174 |
| [21] |
Amjad MW. Dendrimers in anticancer targeted drug delivery: accomplishments, challenges and directions for future. Pharmacy & Pharmacology. 2021;9(1):4–16. (In Russ). doi: 10.19163/2307-9266-2021-9-1-4-16 |
| [22] |
Амджад М.В. Дендримеры в таргетной доставке противоопухолевых препаратов: достижения, проблемы и перспективы дальнейших исследований // Фармация и фармакология. 2021. Т. 9, № 1. С. 4–16. doi: 10.19163/2307-9266-2021-9-1-4-16 |
| [23] |
Chauhan A. Dendrimers for Drug Delivery. Molecules. 2018;23(4):938. doi: 10.3390/molecules23040938 |
| [24] |
Chauhan A. Dendrimers for Drug Delivery // Molecules. 2018. Vol. 23, № 4. P. 938. doi: 10.3390/molecules23040938 |
| [25] |
Shcharbin DG, Klajnert B, Bryszewska M. Dendrimers and their application in biology and medicine. Proceedings of the National Academy of Sciences of Belarus. Series of Biological Sciences. 2010;(2):109–20. (In Russ). |
| [26] |
Щербин Д.Г., Клайнерт Б., Брышевска М. Дендримеры и их применение в биологии и медицине // Известия Национальной академии наук Беларуси. Серия биологических наук. 2010. № 2. С. 109–120. |
| [27] |
Zelepukin IV, Shilova ON, Mirkasymov AB, et al. Universal’nyye podkhody k upravleniyu farmakokinetikoy nanoagentov. In: Perspektivnyye napravleniya fiziko-khimicheskoy biologii i biotekhnologii; Moscow, 10–13 February 2020. Moscow; 2020. P. 12. (In Russ). |
| [28] |
Зелепукин И.В., Шилова О.Н., Миркасымов А.Б., и др. Универсальные подходы к управлению фармакокинетикой наноагентов. В сб.: Перспективные направления физико-химической биологии и биотехнологии; Москва, 10–13 февраля 2020 г. М.; 2020. С. 12. |
| [29] |
Postnov WN, Naumysheva YeB, Korolev DW, et al. Nano-sized carriers for drug delivery applications. Biotekhnosfera. 2013;(6):16–27. (In Russ). |
| [30] |
Постнов В.Н., Наумышева Е.Б., Королев Д.В., и др. Наноразмерные носители для доставки лекарственных препаратов // Биотехносфера. 2013. № 6 (30). С. 16–27. |
| [31] |
Dhand C, Dwivedi N, Loh XJ, et al. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Advances. 2015;5(127):105003–37. doi: 10.1039/C5RA19388E |
| [32] |
Dhand C., Dwivedi N., Loh X.J., et al. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview // RSC Advances. 2015. Vol. 5, № 127. P. 105003–105037. doi: 10.1039/C5RA19388E |
| [33] |
Laza–Knoerr AL, Gref R, Couvreur P. Cyclodextrins for drug delivery. Journal of Drug Targeting. 2010;18(9):645–56. doi: 10.3109/10611861003622552 |
| [34] |
Laza–Knoerr A.L., Gref R., Couvreur P. Cyclodextrins for drug delivery // Journal of Drug Targeting. 2010. Vol. 18, № 9. P. 645–656. doi: 10.3109/10611861003622552 |
| [35] |
Gadade DD, Pekamwar SP. Cyclodextrin Based Nanoparticles for Drug Delivery and Theranostics. Advanced Pharmaceutical Bulletin. 2020;10(2):166–83. doi: 10.34172/apb.2020.022 |
| [36] |
Gadade D.D., Pekamwar S.S. Cyclodextrin Based Nanoparticles for Drug Delivery and Theranostics // Advanced Pharmaceutical Bulletin. 2020. Vol. 10, № 2. P. 166–183. doi: 10.34172/apb.2020.022 |
| [37] |
Desai N, Momin M, Khan T, et al. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opinion on Drug Delivery. 2021;18(9):1261–90. doi: 10.1080/17425247.2021.1912008 |
| [38] |
Desai N., Momin M., Khan T., et al. Metallic nanoparticles as drug delivery system for the treatment of cancer // Expert Opinion on Drug Delivery. 2021. Vol. 18, № 9. P. 1261–1290. doi: 10.1080/17425247.2021.1912008 |
| [39] |
Laurent G, Benbalit C, Chrétien C, et al. Characterization and biodistribution of Au nanoparticles loaded in PLGA nanocarriers using an original encapsulation process. Colloids and Surfaces. B: Biointerfaces. 2021;205:111875. doi: 10.1016/j.colsurfb.2021.111875 |
| [40] |
Laurent G., Benbalit C., Chrétien C., et al. Characterization and biodistribution of Au nanoparticles loaded in PLGA nanocarriers using an original encapsulation process // Colloids and Surfaces. B: Biointerfaces. 2021. Vol. 205. P. 111875. doi: 10.1016/j.colsurfb.2021.111875 |
| [41] |
Samrot AV, Sean TS, Kudaiyappan T, et al. Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. International Journal of Biological Macromolecules. 2020;165(Pt B):3088–105. doi: 10.1016/j.ijbiomac.2020.10.104 |
| [42] |
Samrot A.V., Sean T.S., Kudaiyappan T., et al. Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review // International Journal of Biological Macromolecules. 2020. Vol. 165, Pt. B. P. 3088–3105. doi: 10.1016/j.ijbiomac.2020.10.104 |
| [43] |
Gültekin HE, Değim Z. Biodegradable Polymeric Nanoparticles are Effective Systems for Controlled Drug Delivery. FABAD. Journal of Pharmaceutical Sciences. 2013;38(2):107–18. |
| [44] |
Gültekin H.E., Değim Z. Biodegradable Polymeric Nanoparticles are Effective Systems for Controlled Drug Delivery // FABAD. Journal of Pharmaceutical Sciences. 2013. Vol. 38, № 2. P. 107–118. |
| [45] |
Manzano M, Vallet–Revi M. Mesoporous silica nanoparticles in nanomedicine applications. Journal of Materials Science. Materials in Medicine. 2018;29(5):65. doi: 10.1007/s10856-018-6069-x |
| [46] |
Manzano M., Vallet–Revi M. Mesoporous silica nanoparticles in nanomedicine applications // Journal of Materials Science. Materials in Medicine. 2018. Vol. 29, № 5. P. 65. doi: 10.1007/s10856-018-6069-x |
| [47] |
Abaeva LF, Shumsky VI, Petritskaya EN, et al. Nanoparticles and nanotechnologies: today and beyond. Almanac of Clinical Medicine. 2010;(22):10–6. (In Russ). |
| [48] |
Абаева Л.Ф., Шумский В.И., Петрицкая Е.Н., и др. Наночастицы и нанотехнологии в медицине: сегодня и завтра // Альманах клинической медицины. 2010. № 22. P. 10–16. |
| [49] |
Sutti A, Mishra V, Nayak P, et al. Carbon Nanotubes as Emerging Nanocarriers in Drug Delivery: An Overview. International Journal of Pharmaceutical Quality Assurance. 2020;11(3):373–8. doi: 10.25258/ijpqa.11.3.11 |
| [50] |
Sutti A., Mishra V., Nayak P., et al. Carbon Nanotubes as Emerging Nanocarriers in Drug Delivery: An Overview // International Journal of Pharmaceutical Quality Assurance. 2020. Vol. 11, № 3. P. 373–378. doi: 10.25258/ijpqa.11.3.11 |
| [51] |
Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine (London, England). 2015;10(2):299–320. doi: 10.2217/nnm.14.169 |
| [52] |
Li W., Chen X. Gold nanoparticles for photoacoustic imaging // Nanomedicine (London, England). 2015. Vol. 10, № 2. P. 299–320. doi: 10.2217/nnm.14.169 |
| [53] |
Zivic F, Grujovic N, Mitrovic S, et al. Chapter. Characteristics and Applications of Silver Nanoparticles. In: Commercialization of nanotechnologies – a case study approach. Springer, Cham.; 2018. P. 227–73. doi: 10.1007/978-3-319-56979-6_10 |
| [54] |
Zivic F., Grujovic N., Mitrovic S., et al. Characteristics and Applications of Silver Nanoparticles. In: Commercialization of nanotechnologies — a case study approach. Springer, Cham.; 2018. P. 227–273. doi: 10.1007/978-3-319-56979-6_10 |
| [55] |
Zhao M–X, Zhu B–J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Research Letters. 2016;11(1):207. doi: 10.1186/s11671-016-1394-9 |
| [56] |
Zhao M.–X., Zhu B.–J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy // Nanoscale Research Letters. 2016. Vol. 11, № 1. P. 207. doi: 10.1186/s11671-016-1394-9 |
| [57] |
Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. European Journal of Pharmaceutics and Biopharmaceutics. 2017;113:211–28. doi: 10.1016/j.ejpb.2016.12.019 |
| [58] |
Cagel M., Tesan F.C., Bernabeu E., et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives // European Journal of Pharmaceutics and Biopharmaceutics. 2017. Vol. 113. P. 211–228. doi: 10.1016/j.ejpb.2016.12.019 |
| [59] |
Mozafari MR, Khosravi–Darani K. Chapter 7. An Overview of Liposome – Derived Nanocarrier Technologies. In: Nanomaterials and Nanosystems for Biomedical Applications. Springer, Dordrecht; 2007. P. 113–123. doi: 10.1007/978-1-4020-6289-6_7 |
| [60] |
Mozafari M.R., Khosravi–Darani K. Chapter 7. An Overview of Liposome — Derived Nanocarrier Technologies. In: Nanomaterials and Nanosystems for Biomedical Applications. Springer, Dordrecht; 2007. P. 113–123. doi: 10.1007/978-1-4020-6289-6_7 |
| [61] |
Zaioncz S, Khalil NM, Mainardes RM. Exploring the Role of Nanoparticles in Amphotericin B Delivery. Current Pharmaceutical Design. 2017;23(3):509–21. doi: 10.2174/1381612822666161027103640 |
| [62] |
Zaioncz S., Khalil N.M., Mainardes R.M. Exploring the Role of Nanoparticles in Amphotericin B Delivery // Current Pharmaceutical Design. 2017. Vol. 23, № 3. P. 509–521. doi: 10.2174/1381612822666161027103640 |
| [63] |
Deepa K, Singha S, Panda T. Doxorubicin nanoconjugates. Journal of Nanoscience and Nanotechnology. 2014;14(1):892–904. doi: 10.1166/jnn.2014.8765 |
| [64] |
Deepa K., Singha S., Panda T. Doxorubicin nanoconjugates // Journal of Nanoscience and Nanotechnology. 2014. Vol. 14, № 1. P. 892–904. doi: 10.1166/jnn.2014.8765 |
| [65] |
Pentak D, Maciążek–Jurczyk M. Nonspecific nanocarriers for doxorubicin and cytarabine in the presence of fatted and defatted human albumin. Journal of Molecular Liquids. 2019;278:115–23. doi: 10.1016/j.molliq.2019.01.085 |
| [66] |
Pentak D., Maciążek–Jurczyk M. Nonspecific nanocarriers for doxorubicin and cytarabine in the presence of fatted and defatted human albumin // Journal of Molecular Liquids. 2019. Vol. 278. P. 115–123. doi: 10.1016/j.molliq.2019.01.085 |
| [67] |
Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioengineering & Translational Medicine. 2016;1(1):10–29. doi: 10.1002/btm2.10003 |
| [68] |
Anselmo A.C., Mitragotri S. Nanoparticles in the clinic // Bioengineering & Translational Medicine. 2016. Vol. 1, № 1. P. 10–29. doi: 10.1002/btm2.10003 |
| [69] |
Le NTT, Pham LPT, Nguyen DHT, et al. Chapter. Liposome–based nanocarrier system for phytoconstituents. In: Gupta M, Chauhan DN, Sharma V, et al., editors. Novel Drug Delivery Systems for Phytoconstituents. 1st ed. CRC Press; 2019. P. 45–68. doi: 10.1201/9781351057639-3 |
| [70] |
Le N.T.T., Pham L.P.T., Nguyen D.H.T., et al. Chapter. Liposome–based nanocarrier system for phytoconstituents. In: Gupta M., Chauhan D.N., Sharma V., et al., editors. Novel Drug Delivery Systems for Phytoconstituents. 1st ed. CRC Press; 2019. P. 45–68. doi: 10.1201/9781351057639-3 |
| [71] |
Wang Y, Dou L, He H, et al. Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance. Molecular Pharmaceutics. 2014;11(3):885–94. doi: 10.1021/mp400547u |
| [72] |
Wang Y., Dou L., He H., et al. Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance // Molecular Pharmaceutics. 2014. Vol. 11, № 3. P. 885–894. doi: 10.1021/mp400547u |
| [73] |
Al–Musawi S, Kadhim MJ, Hindi NKK. Folated–nanocarrier for paclitaxel drug delivery in leukemia cancer therapy. Journal of Pharmaceutical Sciences and Research. 2018;10(4):749–54. |
| [74] |
Al–Musawi S., Kadhim M.J., Hindi N.K.K. Folated– nanocarrier for paclitaxel drug delivery in leukemia cancer therapy // Journal of Pharmaceutical Sciences and Research. 2018. Vol. 10, № 4. P. 749–754. |
| [75] |
Barkat NA, Beg S, Potto FH, et al. Nanopaclitaxel therapy: an evidence based review on the battle for next-generation formulation challenges. Nanomedicine (London, England). 2019;14(10):1323–41. doi: 10.2217/nnm-2018-0313 |
| [76] |
Barkat N.A., Beg S., Potto F.H., et al. Nanopaclitaxel therapy: an evidence based review on the battle for next-generation formulation challenges // Nanomedicine (London, England). 2019. Vol. 14, № 10. P. 1323–1341. doi: 10.2217/nnm-2018-0313 |
| [77] |
Miller AD. Lipid-based nanoparticles in cancer diagnosis and therapy. Journal of Drug Delivery. 2013;2013:165981. doi: 10.1155/2013/165981 |
| [78] |
Miller A.D. Lipid–based nanoparticles in cancer diagnosis and therapy // Journal of Drug Delivery. 2013. Vol. 2013. P. 165981. doi: 10.1155/2013/165981 |
| [79] |
Boulikas T. Molecular mechanisms of cisplatin and its liposomally encapsulated form, Lipoplatin™. Lipoplatin™ as a chemotherapy and antiangiogenesis drug. Cancer Therapy. 2007;5:351–76. |
| [80] |
Boulikas T. Molecular mechanisms of cisplatin and its liposomally encapsulated form, Lipoplatin™. Lipoplatin™ as a chemotherapy and antiangiogenesis drug // Cancer Therapy. 2007. Vol. 5. P. 351–376. |
| [81] |
Farooq MA, Aquib M, Farooq A, et al. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. Artificial Cells, Nanomedicine, and Biotechnology. 2019;47(1):1674–92. doi: 10.1080/21691401.2019.1604535 |
| [82] |
Farooq M.A., Aquib M., Farooq A., et al. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview // Artificial Cells, Nanomedicine, and Biotechnology. 2019. Vol. 47, № 1. P. 1674–1692. doi: 10.1080/21691401.2019.1604535 |
| [83] |
Lamichhane N, Udayakumar TS, D'Souza WD, et al. Liposomes: Clinical Applications and Potential for Image–Guided Drug Delivery. Molecules. 2018;23(2):288. doi: 10.3390/molecules23020288 |
| [84] |
Lamichhane N., Udayakumar T.S., D'Souza W.D., et al. Liposomes: Clinical Applications and Potential for Image–Guided Drug Delivery // Molecules. 2018. Vol. 23, № 2. P. 288. doi: 10.3390/molecules23020288 |
| [85] |
Bhattacharya AA, Grüne T, Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. Journal of Molecular Biology. 2000;303(5):721–32. doi: 10.1006/jmbi.2000.4158 |
| [86] |
Bhattacharya A.A., Grüne T., Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin // Journal of Molecular Biology. 2000. Vol. 303, № 5. P. 721–732. doi: 10.1006/jmbi.2000.4158 |
/
| 〈 |
|
〉 |