Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization
Peng Cai, Xiaojie Sun, Yichao Wu, Chunhui Gao, Monika Mortimer, Patricia A. Holden, Marc Redmile-Gordon, Qiaoyun Huang
Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization
Soil is inhabited by a myriad of microorganisms, many of which can form supracellular structures, called biofilms, comprised of surface-associated microbial cells embedded in hydrated extracellular polymeric substance that facilitates adhesion and survival. Biofilms enable intensive inter- and intra-species interactions that can increase the degradation efficiency of soil organic matter and materials commonly regarded as toxins. Here, we first discuss organization, dynamics and properties of soil biofilms in the context of traditional approaches to probe the soil microbiome. Social interactions among bacteria, such as cooperation and competition, are discussed. We also summarize different biofilm cultivation devices in combination with optics and fluorescence microscopes as well as sequencing techniques for the study of soil biofilms. Microfluidic platforms, which can be applied to mimic the complex soil environment and study microbial behaviors at the microscale with high-throughput screening and novel measurements, are also highlighted. This review aims to highlight soil biofilm research in order to expand the current limited knowledge about soil microbiomes which until now has mostly ignored biofilms as a dominant growth form.
Soil microbiome / Soil biofilm / Microbial interactions / Micro-scale environments / Biofilm cultivation devices / Microfluidic techniques
[1] |
Adessi, A., de Carvalho, R.C., De Philippis, R., Branquinho, C., da Silva, J.M., 2018. Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biology & Biochemistry 116, 67–69
CrossRef
Google scholar
|
[2] |
Ahmad, I., Khan, M.S., Altaf, M.M., Qais, F.A., Ansari, F.A., Rumbaugh, K.P., 2017. Biofilms: an overview of their significance in plant and soil health. In: Ahmad, I., Husain, F.M. (Eds.), Biofilms in Plant and Soil Health. John Wiley & Sons, Ltd, Chichester, UK, pp. 1–25.
|
[3] |
Aleklett, K., Kiers, E.T., Ohlsson, P., Shimizu, T.S., Caldas, V.E., Hammer, E.C., 2018. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME Journal 12, 312–319
CrossRef
Pubmed
Google scholar
|
[4] |
Aspray, T.J., Hansen, S.K., Burns, R.G., 2005. A soil-based microbial biofilm exposed to 2,4-D: bacterial community development and establishment of conjugative plasmid pJP4. FEMS Microbiology Ecology 54, 317–327
CrossRef
Pubmed
Google scholar
|
[5] |
Auguet, O., Pijuan, M., Batista, J., Borrego, C.M., Gutierrez, O., 2015. Changes in microbial biofilm communities during colonization of sewer systems. Applied and Environmental Microbiology 81, 7271–7280
CrossRef
Pubmed
Google scholar
|
[6] |
Azeredo, J., Azevedo, N.F., Briandet, R., Cerca, N., Coenye, T., Costa, A.R., Desvaux, M., Di Bonaventura, G., Hébraud, M., Jaglic, Z., Kačániová, M., Knøchel, S., Lourenço, A., Mergulhão, F., Meyer, R.L., Nychas, G., Simões, M., Tresse, O., Sternberg, C., 2017. Critical review on biofilm methods. Critical Reviews in Microbiology 43, 313–351
CrossRef
Pubmed
Google scholar
|
[7] |
Basler, M., Ho, B.T., Mekalanos, J.J., 2013. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152, 884–894
CrossRef
Pubmed
Google scholar
|
[8] |
Bezzate, S., Aymerich, S., Chambert, R., Czarnes, S., Berge, O., Heulin, T., 2000. Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environmental Microbiology 2, 333–342
CrossRef
Pubmed
Google scholar
|
[9] |
Breugelmans, P., Barken, K.B., Tolker-Nielsen, T., Hofkens, J., Dejonghe, W., Springael, D., 2008. Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron. FEMS Microbiology Ecology 64, 271–282
CrossRef
Pubmed
Google scholar
|
[10] |
Büks, F., Kaupenjohann, M., 2016. Enzymatic biofilm digestion in soil aggregates facilitates the release of particulate organic matter by sonication. Soil (Göttingen) 2, 499–509
CrossRef
Google scholar
|
[11] |
Burmølle, M., Hansen, L.H., Sørensen, S.J., 2007. Establishment and early succession of a multispecies biofilm composed of soil bacteria. Microbial Ecology 54, 352–362
CrossRef
Pubmed
Google scholar
|
[12] |
Burmolle, M., Kjoller, A., Sorensen, S.J., 2012. An invisible workforce: biofilms in the soil. In: Gavin L., Gillian L., (Eds.). Microbial Biofilm: Current Research and Applications. Caister Academic Press, pp. 61–71.
|
[13] |
Burmølle, M., Ren, D., Bjarnsholt, T., Sørensen, S.J., 2014. Interactions in multispecies biofilms: do they actually matter? Trends in Microbiology 22, 84–91
CrossRef
Pubmed
Google scholar
|
[14] |
Cai, P., Huang, Q., Walker, S.L., 2013. Deposition and survival of Escherichia coli O157:H7 on clay minerals in a parallel plate flow system. Environmental Science & Technology 47, 1896–1903
CrossRef
Pubmed
Google scholar
|
[15] |
Cai, P., Liu, X., Ji, D., Yang, S., Walker, S.L., Wu, Y., Gao, C., Huang, Q., 2018. Impact of soil clay minerals on growth, biofilm formation, and virulence gene expression of Escherichia coli O157:H7. Environmental Pollution 243, 953–960
CrossRef
Pubmed
Google scholar
|
[16] |
Chaffron, S., Rehrauer, H., Pernthaler, J., von Mering, C., 2010. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Research 20, 947–959
CrossRef
Pubmed
Google scholar
|
[17] |
Chenu, C., 1993. Clay polysaccharide or sand polysaccharide associations as models for the interface between microorganisms and soil water related properties and microstructure. Geoderma 56, 143–156
CrossRef
Google scholar
|
[18] |
Chenu, C., Cosentino, D., 2011. Microbial regulation of soil structural dynamics. In: Ritz, K., Young, I., (Eds.), The architecture and biology and soils: life in inner space. CAB International, London, pp. 37–70.
|
[19] |
Chenu, C., Roberson, E.B., 1996. Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biology & Biochemistry 28, 877–884
CrossRef
Google scholar
|
[20] |
Cordero, O.X., Datta, M.S., 2016. Microbial interactions and community assembly at microscales. Current Opinion in Microbiology 31, 227–234
CrossRef
Pubmed
Google scholar
|
[21] |
Dodd, M.S., Papineau, D., Grenne, T., Slack, J.F., Rittner, M., Pirajno, F., O’Neil, J., Little, C.T., 2017. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64
CrossRef
Pubmed
Google scholar
|
[22] |
Holden, 2001, Biofilms in unsaturated environments. In: Doyle, R.J., ed., Methods of Enzymology. Academic Press, San Diego, California, pp. 125–143.
|
[23] |
Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews. Microbiology 10, 538–550
CrossRef
Pubmed
Google scholar
|
[24] |
Fierer, N., 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews. Microbiology 15, 579–590
CrossRef
Pubmed
Google scholar
|
[25] |
Flemming, H.C., 2010. Biodeterioration of synthetic materials−a brief review. Materials and Corrosion 61, 986–992
CrossRef
Google scholar
|
[26] |
Flemming, H.C., Wingender, J., 2010. The biofilm matrix. Nature Reviews. Microbiology 8, 623–633
CrossRef
Pubmed
Google scholar
|
[27] |
Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., Kjelleberg, S., 2016. Biofilms: an emergent form of bacterial life. Nature Reviews. Microbiology 14, 563–575
CrossRef
Pubmed
Google scholar
|
[28] |
Flemming, H.C., Wuertz, S., 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews. Microbiology 17, 247–260
CrossRef
Pubmed
Google scholar
|
[29] |
Foster, K.R., Bell, T., 2012. Competition, not cooperation, dominates interactions among culturable microbial species. Current Biology 22, 1845–1850
CrossRef
Pubmed
Google scholar
|
[30] |
Freilich, S., Zarecki, R., Eilam, O., Segal, E.S., Henry, C.S., Kupiec, M., Gophna, U., Sharan, R., Ruppin, E., 2011. Competitive and cooperative metabolic interactions in bacterial communities. Nature Communications 2, 589
CrossRef
Pubmed
Google scholar
|
[31] |
Gao, C.H., Zhang, M., Wu, Y., Huang, Q., Cai, P., 2019. Divergent influence to a pathogen invader by resident bacteria with different social interactions. Microbial Ecology 77, 76–86
CrossRef
Pubmed
Google scholar
|
[32] |
Garbeva, P., Silby, M.W., Raaijmakers, J.M., Levy, S.B., Boer, W., 2011. Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME Journal 5, 973–985
CrossRef
Pubmed
Google scholar
|
[33] |
Garcia-Cordero, J.L., Maerkl, S.J., 2014. A 1024-sample serum analyzer chip for cancer diagnostics. Lab on a Chip 14, 2642–2650
CrossRef
Pubmed
Google scholar
|
[34] |
Gravel, D., Bell, T., Barbera, C., Bouvier, T., Pommier, T., Venail, P., Mouquet, N., 2011. Experimental niche evolution alters the strength of the diversity–productivity relationship. Nature 469, 89–92
CrossRef
Pubmed
Google scholar
|
[35] |
Guilbaud, M., Piveteau, P., Desvaux, M., Brisse, S., Briandet, R., 2015. Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomb-like morphotype. Applied and Environmental Microbiology 81, 1813–1819
CrossRef
Pubmed
Google scholar
|
[36] |
Hansen, L.B.S., Ren, D., Burmølle, M., Sørensen, S.J., 2017. Distinct gene expression profile of Xanthomonas retroflexus engaged in synergistic multispecies biofilm formation. ISME Journal 11, 300–303
CrossRef
Pubmed
Google scholar
|
[37] |
Harrison, J.J., Ceri, H., Turner, R.J., 2007. Multimetal resistance and tolerance in microbial biofilms. Nature Reviews. Microbiology 5, 928–938
CrossRef
Pubmed
Google scholar
|
[38] |
Hawlena, H., Bashey, F., Lively, C.M., 2010. The evolution of spite: population structure and bacteriocin-mediated antagonism in two natural populations of Xenorhabdus bacteria. Evolution 64, 3198–3204
CrossRef
Pubmed
Google scholar
|
[39] |
Hibbing, M.E., Fuqua, C., Parsek, M.R., Peterson, S.B., 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews. Microbiology 8, 15–25
CrossRef
Pubmed
Google scholar
|
[40] |
Kenny, D.J., Balskus, E.P., 2018. Engineering chemical interactions in microbial communities. Chemical Society Reviews 47, 1705–1729
CrossRef
Pubmed
Google scholar
|
[41] |
Kim, H.J., Boedicker, J.Q., Choi, J.W., Ismagilov, R.F., 2008. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proceedings of the National Academy of Sciences of the United States of America 105, 18188–18193
CrossRef
Pubmed
Google scholar
|
[42] |
Kragh, K.N., Hutchison, J.B., Melaugh, G., Rodesney, C., Roberts, A.E.L., Irie, Y., Jensen, P.Ø., Diggle, S.P., Allen, R.J., Gordon, V., Bjarnsholt, T., 2016. Role of multicellular aggregates in biofilm formation. mBio 7, e00237–e16
CrossRef
Pubmed
Google scholar
|
[43] |
Kuzyakov, Y., Blagodatskaya, E., 2015. Microbial hotspots and hot moments in soil: Concept & review. Soil Biology & Biochemistry 83, 184–199
CrossRef
Google scholar
|
[44] |
Lee, K.W.K., Periasamy, S., Mukherjee, M., Xie, C., Kjelleberg, S., Rice, S.A., 2014. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME Journal 8, 894–907
CrossRef
Pubmed
Google scholar
|
[45] |
Lehmann, A., Zheng, W., Rillig, M.C., 2017. Soil biota contributions to soil aggregation. Nature Ecology & Evolution 1, 1828–1835
CrossRef
Pubmed
Google scholar
|
[46] |
Liang, C., Balser, T.C., 2011. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nature Reviews. Microbiology 9, 75, author reply 75
CrossRef
Pubmed
Google scholar
|
[47] |
Liang, J., Bai, Y., Men, Y., Qu, J., 2017. Microbe-microbe interactions trigger Mn(II)-oxidizing gene expression. ISME Journal 11, 67–77
CrossRef
Pubmed
Google scholar
|
[48] |
Liu, W., Røder, H.L., Madsen, J.S., Bjarnsholt, T., Sørensen, S.J., Burmølle, M., 2016. Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization. Frontiers in Microbiology 7, 1366
CrossRef
Pubmed
Google scholar
|
[49] |
Liu, W., Russel, J., Burmølle, M., Sørensen, S.J., Madsen, J.S., 2018. Micro-scale intermixing: a requisite for stable and synergistic co-establishment in a four-species biofilm. ISME Journal 12, 1940–1951
CrossRef
Pubmed
Google scholar
|
[50] |
Liu, W., Russel, J., Røder, H.L., Madsen, J.S., Burmølle, M., Sørensen, S.J., 2017. Low-abundant species facilitates specific spatial organization that promotes multispecies biofilm formation. Environmental Microbiology 19, 2893–2905
CrossRef
Pubmed
Google scholar
|
[51] |
Liu, Y., Walther-Antonio, M., 2017. Microfluidics: a new tool for microbial single cell analyses in human microbiome studies. Biomicrofluidics 11, 061501
CrossRef
Google scholar
|
[52] |
Ma, W.T., Peng, D.H., Walker S.L., Cao, B., Gao, C.H., Huang, Q.Y., Cai, P., 2017. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides. npj Biofilms and Microbiomes 3:4.
|
[53] |
Madsen, J.S., Burmølle, M., Hansen, L.H., Sørensen, S.J., 2012. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunology and Medical Microbiology 65, 183–195
CrossRef
Pubmed
Google scholar
|
[54] |
Madsen, J.S., Røder, H.L., Russel, J., Sørensen, H., Burmølle, M., Sørensen, S.J., 2016. Coexistence facilitates interspecific biofilm formation in complex microbial communities. Environmental Microbiology 18, 2565–2574
CrossRef
Pubmed
Google scholar
|
[55] |
Maeda, K., Nagata, H., Ojima, M., Amano, A., 2015. Proteomic and transcriptional analysis of interaction between oral microbiota Porphyromonas gingivalis and Streptococcus oralis. Journal of Proteome Research 14, 82–94
CrossRef
Pubmed
Google scholar
|
[56] |
Magana, M., Sereti, C., Ioannidis, A., Mitchell, C.A., Ball, A.R., Magiorkinis, E., Chatzipanagiotou, S., Hamblin, M.R., Hadjifrangiskou, M., Tegos, G.P., 2018. Options and limitations in clinical investigation of bacterial biofilms. Clinical Microbiology Reviews 31, e00084–e16
CrossRef
Pubmed
Google scholar
|
[57] |
Martin, J.P., Aldrich, D.G., 1955. Influence of soil exchangeable cation ratios on the aggregating effects of natural and synthetic soil conditioners. Soil Science Society of America Journal 19, 50–54
CrossRef
Google scholar
|
[58] |
Massalha, H., Korenblum, E., Malitsky, S., Shapiro, O.H., Aharoni, A., 2017. Live imaging of root-bacteria interactions in a microfluidics setup. Proceedings of the National Academy of Sciences of the United States of America 114, 4549–4554
CrossRef
Pubmed
Google scholar
|
[59] |
McDougald, D., Rice, S.A., Barraud, N., Steinberg, P.D., Kjelleberg, S., 2011. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nature Reviews. Microbiology 10, 39–50
CrossRef
Pubmed
Google scholar
|
[60] |
Methé, B.A., Nelson, K.E., Pop, M.,
CrossRef
Pubmed
Google scholar
|
[61] |
Metwalli, K.H., Khan, S.A., Krom, B.P., Jabra-Rizk, M.A., 2013. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation. PLoS Pathogens 9, e1003616
CrossRef
Pubmed
Google scholar
|
[62] |
Nadell, C.D., Drescher, K., Foster, K.R., 2016. Spatial structure, cooperation and competition in biofilms. Nature Reviews. Microbiology 14, 589–600
CrossRef
Pubmed
Google scholar
|
[63] |
Nunan, N., 2017. The microbial habitat in soil: scale, heterogeneity and functional consequences. Journal of Plant Nutrition and Soil Science 180, 425–429
CrossRef
Google scholar
|
[64] |
O’Toole, G.A., Wong, G.C., 2016. Sensational biofilms: surface sensing in bacteria. Current Opinion in Microbiology 30, 139–146
CrossRef
Pubmed
Google scholar
|
[65] |
Oliveira, N.M., Martinez-Garcia, E., Xavier, J., Durham, W.M., Kolter, R., Kim, W., Foster, K.R., 2015. Biofilm formation as a response to ecological competition. PLoS Biology 13, e1002191
CrossRef
Pubmed
Google scholar
|
[66] |
Olsen, I., 2015. Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology & Infectious Diseases 34, 877–886
CrossRef
Pubmed
Google scholar
|
[67] |
Oppenheimer-Shaanan, Y., Steinberg, N., Kolodkin-Gal, I., 2013. Small molecules are natural triggers for the disassembly of biofilms. Trends in Microbiology 21, 594–601
CrossRef
Pubmed
Google scholar
|
[68] |
Or, D., Phutane, S., Dechesne, A., 2007. Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils. Vadose Zone Journal 6, 298–305
CrossRef
Google scholar
|
[69] |
Pande, S., Kaftan, F., Lang, S., Svatoš, A., Germerodt, S., Kost, C., 2016. Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. ISME Journal 10, 1413–1423
CrossRef
Pubmed
Google scholar
|
[70] |
Parsek, M.R., Greenberg, E.P., 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiology 13, 27–33
CrossRef
Pubmed
Google scholar
|
[71] |
Patin, N.V., Duncan, K.R., Dorrestein, P.C., Jensen, P.R., 2016. Competitive strategies differentiate closely related species of marine actinobacteria. ISME Journal 10, 478–490
CrossRef
Pubmed
Google scholar
|
[72] |
Perez-Garcia, O.Lear, G., Singhal, N., 2016. Metabolic network modeling of microbial interactions in natural and engineered environmental systems. Frontiers in Microbiology 7, UNSP 673.
|
[73] |
Raaijmakers, J.M., Mazzola, M., 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology 50, 403–424
CrossRef
Pubmed
Google scholar
|
[74] |
Raja, M., Hannan, A., Ali, K., 2010. Association of oral candidal carriage with dental caries in children. Caries Research 44, 272–276
CrossRef
Pubmed
Google scholar
|
[75] |
Raynaud, X., Nunan, N., 2014. Spatial ecology of bacteria at the microscale in soil. PLoS One 9, e87217
CrossRef
Pubmed
Google scholar
|
[76] |
Ren, D., Madsen, J.S., de la Cruz-Perera, C.I., Bergmark, L., Sørensen, S.J., Burmølle, M., 2014. High-throughput screening of multispecies biofilm formation and quantitative PCR-based assessment of individual species proportions, useful for exploring interspecific bacterial interactions. Microbial Ecology 68, 146–154
CrossRef
Pubmed
Google scholar
|
[77] |
Ren, D., Madsen, J.S., Sørensen, S.J., Burmølle, M., 2015. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME Journal 9, 81–89
CrossRef
Pubmed
Google scholar
|
[78] |
Rillig, M.C., Muller, L.A., Lehmann, A., 2017. Soil aggregates as massively concurrent evolutionary incubators. ISME Journal 11, 1943–1948
CrossRef
Pubmed
Google scholar
|
[79] |
Rusconi, R., Garren, M., Stocker, R., 2014. Microfluidics expanding the frontiers of microbial ecology. Annual Review of Biophysics 43, 65–91
CrossRef
Pubmed
Google scholar
|
[80] |
Russel, J., Røder, H.L., Madsen, J.S., Burmølle, M., Sørensen, S.J., 2017. Antagonism correlates with metabolic similarity in diverse bacteria. Proceedings of the National Academy of Sciences of the United States of America 114, 10684–10688
CrossRef
Pubmed
Google scholar
|
[81] |
Schoustra, S.E., Dench, J., Dali, R., Aaron, S.D., Kassen, R., 2012. Antagonistic interactions peak at intermediate genetic distance in clinical and laboratory strains of Pseudomonas aeruginosa. BMC Microbiology 12, 40
CrossRef
Pubmed
Google scholar
|
[82] |
Seneviratne, G., Jayasinghearachchi, H.S., 2005. A rhizobial biofilm with nitrogenase activity alters nutrient availability in a soil. Soil Biology & Biochemistry 37, 1975–1978
CrossRef
Google scholar
|
[83] |
Sørensen, S.J., Bailey, M., Hansen, L.H., Kroer, N., Wuertz, S., 2005. Studying plasmid horizontal transfer in situ: a critical review. Nature Reviews. Microbiology 3, 700–710
CrossRef
Pubmed
Google scholar
|
[84] |
Szamosvári, D., Rütschlin, S., Böttcher, T., 2018. From pirates and killers: does metabolite diversity drive bacterial competition? Organic & Biomolecular Chemistry 16, 2814–2819
CrossRef
Pubmed
Google scholar
|
[85] |
Sztajer, H., Szafranski, S.P., Tomasch, J., Reck, M., Nimtz, M., Rohde, M., Wagner-Döbler, I., 2014. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. ISME Journal 8, 2256–2271
CrossRef
Pubmed
Google scholar
|
[86] |
Trejo-Hernández, A., Andrade-Domínguez, A., Hernández, M., Encarnación, S., 2014. Interspecies competition triggers virulence and mutability in Candida albicans-Pseudomonas aeruginosa mixed biofilms. ISME Journal 8, 1974–1988
CrossRef
Pubmed
Google scholar
|
[87] |
Vetsigian, K., Jajoo, R., Kishony, R., 2011. Structure and evolution of Streptomyces interaction networks in soil and in silico. PLoS Biology 9, e1001184
CrossRef
Pubmed
Google scholar
|
[88] |
Vos, M., Wolf, A.B., Jennings, S.J., Kowalchuk, G.A., 2013. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews 37, 936–954
CrossRef
Pubmed
Google scholar
|
[89] |
Young, I.M., Crawford, J.W., 2004. Interactions and self-organization in the soil-microbe complex. Science 304, 1634–1637
CrossRef
Pubmed
Google scholar
|
[90] |
Young, I.M., Crawford, J.W., Nunan, N., Otten, W., Spiers, A., 2008. Chapter 4 Microbial Distribution in Soils. In: Advances in Agronomy. Elsevier, pp. 81–121.
|
[91] |
Zengler, K., Zaramela, L.S., 2018. The social network of microorganisms - how auxotrophies shape complex communities. Nature Reviews. Microbiology 16, 383–390
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |